Odpowiedź:
Wyjaśnienie:
Wiemy, że równanie linii jest
Podano, że nachylenie wynosi -3 tak
To nam daje
Aby znaleźć wartość c, umieściliśmy w niej punkt.
To daje ostateczne równanie jako
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Równanie linii wynosi -3y + 4x = 9. Jak napisać równanie linii równoległej do linii i przechodzącej przez punkt (-12,6)?
Y-6 = 4/3 (x + 12) Będziemy używać formy gradientu punktowego, ponieważ mamy już punkt, przez który przejdzie linia (-12,6), a słowo równoległe oznacza, że gradient dwóch linii musi być taki sam. aby znaleźć gradient linii równoległej, musimy znaleźć gradient linii, do której jest równoległy. Ta linia to -3y + 4x = 9, którą można uprościć na y = 4 / 3x-3. Daje nam to gradient 4/3 Teraz, aby zapisać równanie, które umieściliśmy w tej formule, y-y_1 = m (x-x_1), były (x_1, y_1) punktem, przez który przechodzą, a m jest gradientem.
Napisz równanie punkt-nachylenie równania o danym nachyleniu, które przechodzi przez wskazany punkt. A.) linia z nachyleniem -4 przechodzącym przez (5,4). a także B.) linia z nachyleniem 2 przechodzącym przez (-1, -2). proszę o pomoc, to mylące?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "równanie linii w" kolorze (niebieski) "forma punkt-nachylenie" jest. • kolor (biały) (x) y-y_1 = m (x-x_1) "gdzie m jest nachyleniem i" (x_1, y_1) "punkt na linii" (A) "podany" m = -4 "i „(x_1, y_1) = (5,4)” zastępując te wartości równaniem daje „y-4 = -4 (x-5) larrcolor (niebieski)„ w formie punkt-nachylenie ”(B)„ podany ”m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (niebieski) " w formie punkt-nachylenie ”