Odpowiedź:
Długość oryginalnych stron:
Wyjaśnienie:
Pozwolić
Powiedziano nam
W związku z tym
Zastosowanie wzoru kwadratowego:
(z odrobiną arytmetyki)
dostajemy:
ale ponieważ długość boku musi być
tylko
Długość prostokąta jest o 3,5 cala większa niż jego szerokość. Obwód prostokąta wynosi 31 cali. Jak znaleźć długość i szerokość prostokąta?
Długość = 9,5 ", szerokość = 6" Zacznij od równania obwodu: P = 2l + 2w. Następnie wpisz informacje, które znamy. Obwód wynosi 31 ", a długość jest równa szerokości + 3,5". Dlatego: 31 = 2 (w + 3,5) + 2w, ponieważ l = w + 3,5. Następnie rozwiązujemy dla w, dzieląc wszystko przez 2. Pozostaje nam wtedy 15,5 = w + 3,5 + w. Następnie odejmij 3,5 i połącz w w celu uzyskania: 12 = 2w. Na koniec podziel ponownie przez 2, aby znaleźć w, a otrzymamy 6 = w. To mówi nam, że szerokość wynosi 6 cali, połowa problemu. Aby znaleźć długość, po prostu podłączamy nowe znalezione informacje o sze
Bok kwadratu jest o 4 cm krótszy niż bok drugiego kwadratu. Jeśli suma ich powierzchni wynosi 40 centymetrów kwadratowych, jak znaleźć długość jednej strony większego kwadratu?
Długość boku większego kwadratu wynosi 6 cm. Niech „a” będzie bokiem krótszego kwadratu. Następnie według warunku „a + 4” jest stroną większego kwadratu. Wiemy, że powierzchnia kwadratu jest równa kwadratowi jego boku. Więc ^ 2 + (a + 4) ^ 2 = 40 (podane) lub 2 a ^ 2 + 8 * a -24 = 0 lub a ^ 2 + 4 * a -12 = 0 lub (a + 6) * ( a-2) = 0 Więc a = 2 lub a = -6 Długość boków może być ujemna. :. a = 2. Stąd długość boku większego kwadratu wynosi + 4 = 6 [Odpowiedź]
Szerokość i długość prostokąta są kolejnymi parzystymi liczbami całkowitymi. Jeśli szerokość jest zmniejszona o 3 cale. następnie obszar wynikowego prostokąta ma 24 cale kwadratowe. Jaki jest obszar oryginalnego prostokąta?
48 „cali kwadratowych” „niech szerokość” = n ”to długość” = n + 2 n ”i„ n + 2 kolor (niebieski) ”to kolejne parzyste liczby całkowite„ ”szerokość jest zmniejszana o„ 3 ”cale„ rArr ”szerokość "= n-3" obszar "=" długość "xx" szerokość "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (niebieski) „w standardowej formie” „współczynniki - 30, które sumują się do - 1 są + 5 i - 6” rArr (n-6) (n + 5) = 0 ”zrównują każdy współczynnik do zera i rozwiązują dla n” n-6 = 0rArrn = 6 n + 5 = 0rArrn = -5 n> 0rArrn = 6 "oryginalne wymiary prostokąta to&qu