Odpowiedź:
Wyjaśnienie:
Po otrzymaniu punktu
możesz podłączyć go do postaci nachylenia punktu
Więc biorąc pod uwagę twój punkt widzenia
możemy się podłączyć
w
uzyskać:
Równanie linii QR to y = - 1/2 x + 1. Jak napisać równanie linii prostopadłej do linii QR w postaci nachylenia-przecięcia, która zawiera punkt (5, 6)?
Zobacz proces rozwiązania poniżej: Najpierw musimy znaleźć nachylenie dla dwóch punktów problemu. Linia QR jest w formie nachylenia-przecięcia. Formą nachylenia-przecięcia równania liniowego jest: y = kolor (czerwony) (m) x + kolor (niebieski) (b) Gdzie kolor (czerwony) (m) to nachylenie, a kolor (niebieski) (b) to kolor wartość przecięcia y. y = kolor (czerwony) (- 1/2) x + kolor (niebieski) (1) Dlatego nachylenie QR jest: kolor (czerwony) (m = -1/2) Następnie nazwijmy nachylenie prostopadłej linii do tego m_p Reguła prostopadłych zboczy wynosi: m_p = -1 / m Zastępując nachylenie, które obliczyliśmy, d
Tomas napisał równanie y = 3x + 3/4. Kiedy Sandra napisała swoje równanie, odkryli, że jej równanie ma wszystkie te same rozwiązania, co równanie Tomasa. Które równanie może być równaniem Sandry?
4y = 12x +3 12x-4y +3 = 0 Równanie może być podane w wielu formach i nadal oznacza to samo. y = 3x + 3/4 "" (znany jako forma nachylenia / przecięcia). Mnożona przez 4, aby usunąć ułamek, daje: 4y = 12x +3 "" rarr 12x-4y = -3 "" (formularz standardowy) 12x- 4y +3 = 0 "" (forma ogólna) Wszystkie są w najprostszej formie, ale moglibyśmy również mieć ich nieskończenie różne. 4y = 12x + 3 można zapisać jako: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 itd.
W ciągu roku szkolnego Rachel musi napisać 3 raporty książkowe ze stronami b i 3 raporty naukowe. Jak napisać wyrażenie algebraiczne dla całkowitej liczby stron, które Rachel będzie musiała napisać?
3b + 3s Posiadamy po 3 książki z ilością stron. Możemy napisać to jako b + b + b lub 3b, ponieważ mamy 3 partie b. Teraz, patrząc na liczbę raportów naukowych, mamy 3 serie stron, więc jest ich 3. W oparciu o całkowitą liczbę stron dodajemy liczbę raportów o książkach i liczbę raportów naukowych, więc otrzymujemy 3b + 3s Hope this help!