Odpowiedź:
Wyjaśnienie:
1) Znajdź nachylenie dwóch linii.
2) Znajdź prostopadłość obu stoków.
3) Znajdź punkty środkowe użytych punktów.
4) Używając nachylenia, znajdź pasujące do niego równanie.
4) Set wykonuje równania równe sobie.
5) Podłącz wartość x i rozwiń dla y
6) Odpowiedź brzmi …
Czym jest ortocentrum trójkąta z narożnikami w (1, 2), (5, 6) i (4, 6) #?
Ortocentrum trójkąta to: (1,9) Niech, trójkątABC to trójkąt z narożnikami w punkcie A (1,2), B (5,6) i C (4,6) Niech, słupek (AL), słupek (BM) a słupek (CN) to odpowiednio wysokości na słupkach bocznych (BC), słupku (AC) i słupku (AB). Niech (x, y) będzie przecięciem trzech wysokości. Nachylenie pręta (AB) = (6-2) / (5-1) = 1 => nachylenie pręta (CN) = - 1 [:. wysokość] i słupek (CN) przechodzi przez C (4,6), więc equn. bar (CN) to: y-6 = -1 (x-4) tj. kolor (czerwony) (x + y = 10 .... do (1) Teraz, nachylenie pręta (AC) = (6-2 ) / (4-1) = 4/3 => nachylenie pręta (BM) = - 3/4 [:. wysokość] i słupek (BM)
Czym jest ortocentrum trójkąta z narożnikami w (1, 3), (5, 7) i (2, 3) #?
Ortocentrum trójkąta ABC to H (5,0) Niech trójkąt będzie ABC z narożnikami w A (1,3), B (5,7) i C (2,3). więc nachylenie „linii” (AB) = (7-3) / (5-1) = 4/4 = 1 Niech, bar (CN) _ | _bar (AB):. Nachylenie „linii” CN = -1 / 1 = -1 i przechodzi przez C (2,3). :. Equn. „linii” CN, jest: y-3 = -1 (x-2) => y-3 = -x + 2 tj. x + y = 5 ... do (1) Teraz nachylenie „linii” (BC) = (7-3) / (5-2) = 4/3 Pozwól, bar (AM) _ | _bar (BC):. Nachylenie „linii” AM = -1 / (4/3) = - 3/4 i przechodzi przez A (1,3). :. Equn. „linii” AM to: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3 tj. 3x + 4y = 15 ... do (2) Przecięcie „linii” CN i
Czym jest ortocentrum trójkąta z narożnikami w (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Powtarzanie punktów: A (1,3) B (5,7) C (9,8) Ortocentrum trójkąta jest punktem, w którym linia wysokości względem każdej strony (przechodząc przez przeciwny wierzchołek) spotykają się. Potrzebujemy więc tylko równań 2 linii. Nachylenie linii wynosi k = (Delta y) / (Delta x), a nachylenie linii prostopadłej do pierwszej wynosi p = -1 / k (gdy k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Równanie linii (przechodzącej przez C), w której określa się wysokość prostopadłą do AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x