Odpowiedź:
Stok
Wyjaśnienie:
Znalezienie nachylenia jest zmianą w y podzieloną przez zmianę w x
Ułamki o różnych mianownikach sprawiają, że jest to trudny problem.
Aby ułatwić problem, wielokrotne ułamki najmniejszym wspólnym mianownikiem, aby zniknęły ułamki.
Mnożenie przez najmniej wspólny mianownik wygląda tak.
To daje
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (8, -3), (1,0)?
7x-3y + 1 = 0 Nachylenie linii łączącej dwa punkty (x_1, y_1) i (x_2, y_2) jest podane przez (y_2-y_1) / (x_2-x_1) lub (y_1-y_2) / (x_1-x_2 ) Ponieważ punkty to (8, -3) i (1, 0), nachylenie linii łączącej je zostanie podane przez (0 - (- 3)) / (1-8) lub (3) / (- 7) tj. -3/7. Produkt nachylenia dwóch prostopadłych linii wynosi zawsze -1. Stąd nachylenie linii prostopadłej do niego będzie 7/3 i stąd równanie w postaci nachylenia można zapisać jako y = 7 / 3x + c Gdy przechodzi przez punkt (0, -1), umieszczając te wartości w powyższym równaniu, otrzymamy -1 = 7/3 * 0 + c lub c = 1 Stąd pożądane równanie bę
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (13,20), (16,1)?
Y = 3/19 * x-1 Nachylenie linii przechodzi przez (13,20) i (16,1) wynosi m_1 = (1-20) / (16-13) = - 19/3 Znamy stan perpedicularity między dwiema liniami jest iloczynem ich nachyleń równych -1: .m_1 * m_2 = -1 lub (-19/3) * m_2 = -1 lub m_2 = 3/19 Więc linia przechodząca przez (0, -1 ) jest y + 1 = 3/19 * (x-0) lub y = 3/19 * x-1 wykres {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (-5,11), (10,6)?
Y = 3x-1 "równanie linii prostej jest podawane przez" y = mx + c "gdzie m = gradient &" c = "przecięcie y" "chcemy gradient linii prostopadłej do linii" „przechodząc przez podane punkty” (-5,11), (10,6) będziemy potrzebować „” m_1m_2 = -1 dla linii podanej m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3 więc wymagany eqn. staje się y = 3x + c przechodzi przez „” (0, -1) -1 = 0 + c => c = -1: .y = 3x-1