Odpowiedź:
Jeśli nieparzyste liczby całkowite są kolejne, wywołaj jeden
Wyjaśnienie:
Jeśli nazwiemy pierwszą z dwóch liczb całkowitych
Zdajemy sobie sprawę, że liczby będą wynosić około 75, ponieważ po dodaniu dają coś około 150. Ten rodzaj szacowania jest pomocny w rozważaniu, czy odpowiedź, którą wymyślimy, ma sens.
Wiemy:
Więc pierwsza z naszych liczb to
Dwie kolejne liczby całkowite nieparzyste mają sumę 128, jakie są liczby całkowite?
63 "i" 65 Moja strategia wykonywania takich problemów polega na podzieleniu 128 na pół i przyjęciu nieparzystej liczby całkowitej bezpośrednio powyżej i poniżej wyniku. Wykonanie tego dla 128 daje to: 128/2 = 64 64-1 = 63 64 + 1 = 65 63 + 65 = 128 Jak 63 i 65 są dwiema kolejnymi nieparzystymi liczbami całkowitymi, które sumują się do 128, to spełnia problem.
Dwie kolejne liczby całkowite nieparzyste mają sumę 48, jakie są dwie nieparzyste liczby całkowite?
23 i 25 razem dodają 48. Możesz myśleć o dwóch kolejnych nieparzystych liczbach całkowitych jako o wartości x i x + 2. x jest mniejszym z dwóch, a x + 2 jest o 2 więcej niż 1 (o 1 więcej niż byłoby to równe). Możemy teraz użyć tego w równaniu algebry: (x) + (x + 2) = 48 Konsolidacja lewej strony: 2x + 2 = 48 Odejmij 2 z obu stron: 2x = 46 Podziel obie strony o 2: x = 23 Teraz, wiedząc, że mniejsza liczba to x, a x = 23, możemy podłączyć 23 do x + 2 i uzyskać 25. Inny sposób rozwiązania tego problemu wymaga trochę intuicji. Jeśli podzielimy 48 przez 2, otrzymamy 24, co jest równe. Ale jeśli ode
Dwie kolejne liczby nieparzyste można modelować za pomocą wyrażenia n i n + 2. Jeśli ich suma wynosi 120, jakie są dwie liczby nieparzyste?
Kolor (zielony) (59) i kolor (zielony) (61) Suma dwóch liczb: kolor (biały) („XXX”) kolor (czerwony) (n) + kolor (niebieski) (n + 2) = 120 kolor (biały) („XXX”) rarr 2n + 2 = 120 kolor (biały) („XXX”) rarr 2n = 118 kolor (biały) („XXX”) rarrn = 59 kolor (biały) („XXXXXX”) ( oraz n + 2 = 59 + 2 = 61)