Niech f będzie funkcją ciągłą: a) Znajdź f (4), jeśli _0 ^ (x ^ 2) f (t) dt = x sin πx dla wszystkich x. b) Znajdź f (4), jeśli _0 ^ f (x) t ^ 2 dt = x sin πx dla wszystkich x?

Niech f będzie funkcją ciągłą: a) Znajdź f (4), jeśli _0 ^ (x ^ 2) f (t) dt = x sin πx dla wszystkich x. b) Znajdź f (4), jeśli _0 ^ f (x) t ^ 2 dt = x sin πx dla wszystkich x?
Anonim

Odpowiedź:

za) #f (4) = pi / 2 #; b) #f (4) = 0 #

Wyjaśnienie:

za) Rozróżnij obie strony.

Poprzez Drugie Podstawowe Twierdzenie Rachunku Rachunkowego po lewej stronie i reguły produktu i łańcucha po prawej stronie widzimy, że zróżnicowanie ujawnia, że:

#f (x ^ 2) * 2x = sin (pix) + pixcos (pix) #

Wypuszczanie # x = 2 # pokazuje, że

#f (4) * 4 = sin (2pi) + 2picos (2pi) #

#f (4) * 4 = 0 + 2pi * 1 #

#f (4) = pi / 2 #

b) Zintegruj termin wewnętrzny.

# int_0 ^ f (x) t ^ 2dt = xsin (pix) #

# t ^ 3/3 _0 ^ f (x) = xsin (pix) #

Oceniać.

# (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) #

# (f (x)) ^ 3/3 = xsin (pix) #

# (f (x)) ^ 3 = 3xsin (pix) #

Pozwolić # x = 4 #.

# (f (4)) ^ 3 = 3 (4) sin (4pi) #

# (f (4)) ^ 3 = 12 * 0 #

#f (4) = 0 #