Odpowiedź:
Zobacz proces rozwiązania poniżej:
Wyjaśnienie:
To równanie jest w standardowej postaci liniowej. Standardową formą równania liniowego jest:
Gdzie, jeśli w ogóle możliwe,
Nachylenie lub gradient równania w standardowej postaci liniowej to:
Zastępowanie współczynników z równania w problemie daje:
The
The
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
PERIMETER trapezu równoramiennego ABCD wynosi 80 cm. Długość linii AB jest 4 razy większa niż długość linii CD, która wynosi 2/5 długości linii BC (lub linii, które są takie same w długości). Jaki jest obszar trapezu?
Powierzchnia trapezu wynosi 320 cm ^ 2. Niech trapez będzie taki, jak pokazano poniżej: Tutaj, jeśli przyjmiemy mniejszy bok CD = większy i większy bok AB = 4a i BC = a / (2/5) = (5a) / 2. Jako taki BC = AD = (5a) / 2, CD = a i AB = 4a Stąd obwód wynosi (5a) / 2xx2 + a + 4a = 10a Ale obwód wynosi 80 cm. Stąd a = 8 cm. a dwa równoległe boki pokazane jako a i b wynoszą 8 cm. i 32 cm. Teraz rysujemy prostopadłe fronty C i D do AB, które tworzą dwa identyczne trójkąty prostokątne, których przeciwprostokątna wynosi 5 / 2xx8 = 20 cm. a podstawa to (4xx8-8) / 2 = 12, a zatem jej wysokość to sqrt (20
Co to jest równanie linii, która ma przecięcie Y -2 i jest prostopadła do linii x-2y = 5?
2x + y = -2 Napisz jako y_1 = 1 / 2x -5/2 Jeśli masz standardową postać y = mx + c, to gradient jej normalnej wartości wynosi -1 / m Gradient linii normalnej do tego wynosi -1 razy (1/2) ^ („odwrócony”) = -2 Gdy przechodzi przez y = 02 przy x = 0, równanie staje się: y_2 = -2x-2 W tej samej formie co pytanie daje: 2x + y = -2