Pierwiastek kwadratowy z
Odpowiedź:
Wyjaśnienie:
Wszystkie liczby dodatnie mają zwykle dwa pierwiastki kwadratowe, dodatnie i ujemne tego samego rozmiaru. Oznaczamy pierwiastek kwadratowy dodatni (główny a.k.a.) z
Pierwiastek kwadratowy z liczby
Jednak popularne jest to, że „pierwiastek kwadratowy” odnosi się do pierwiastka dodatniego.
Załóżmy, że mamy liczbę dodatnią
#x = 2 + 1 / (2 + x) #
Potem pomnożenie obu stron przez
# x ^ 2 + 2x = 2x + 5 #
Następnie odejmowanie
# x ^ 2 = 5 #
Więc znaleźliśmy:
#sqrt (5) = 2 + 1 / (2 + sqrt (5)) #
#color (biały) (sqrt (5)) = 2 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + …))))) #
Ponieważ ta ciągła część nie kończy się, możemy to powiedzieć
Na przykład:
#sqrt (5) ~~ 2 + 1 / (4 + 1/4) = 2 + 4/17 = 38/17 ~~ 2,235 #
Rozpakowanie tych ciągłych ułamków może być trochę żmudne, więc generalnie wolę stosować inną metodę, mianowicie współczynnik ograniczający sekwencję całkowitą zdefiniowaną rekurencyjnie.
Zdefiniuj sekwencję według:
# {(a_0 = 0), (a_1 = 1), (a_ (n + 2) = 4a_ (n + 1) + a_n):} #
Pierwsze kilka terminów to:
#0, 1, 4, 17, 72, 305, 1292, 5473#
Stosunek między terminami będzie miał tendencję
Więc znajdujemy:
#sqrt (5) ~~ 5473/1292 - 2 = 2889/1292 ~~ 2.236068 #
Co to jest [5 (pierwiastek kwadratowy z 5) + 3 (pierwiastek kwadratowy z 7)] / [4 (pierwiastek kwadratowy z 7) - 3 (pierwiastek kwadratowy z 5)]?
(159 + 29sqrt (35)) / 47 kolorów (biały) („XXXXXXXX”) zakładając, że nie popełniłem żadnych błędów arytmetycznych (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Racjonalizuj mianownik mnożąc przez koniugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Jaki jest pierwiastek kwadratowy z 3 + pierwiastek kwadratowy z 72 - pierwiastek kwadratowy z 128 + pierwiastek kwadratowy z 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Wiemy, że 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, więc sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Wiemy, że 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, więc sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Wiemy, że 128 = 2 ^ 7 , więc sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Simplifying 7sqrt (3) - 2sqrt (2)
Jaki jest pierwiastek kwadratowy z 7 + pierwiastek kwadratowy z 7 ^ 2 + pierwiastek kwadratowy z 7 ^ 3 + pierwiastek kwadratowy z 7 ^ 4 + pierwiastek kwadratowy z 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Pierwszą rzeczą, którą możemy zrobić, to anulować korzenie na tych z parzystymi mocami. Ponieważ: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 dla dowolnej liczby, możemy po prostu powiedzieć, że sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz 7 ^ 3 można przepisać jako 7 ^ 2 * 7, i że 7 ^ 2 może wydostać się z korzenia! To samo dotyczy 7 ^ 5, ale zostało przepisane jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49