Zacznij od używania zmiennych do zdefiniowania liczb.
Niech najmniejsza liczba całkowita będzie
Pozostałe liczby całkowite są zatem
Ich suma wynosi -42
Liczby całkowite to -12 -11 -10 i -9.
Suma czterech kolejnych nieparzystych liczb całkowitych wynosi -72. Jaka jest wartość czterech liczb całkowitych?
Żadne rozwiązanie nie jest możliwe. Niech n oznacza najmniejszą z 4 kolejnych liczb całkowitych. Dlatego liczby całkowite będą n, n + 1, n + 2, a n + 3, a ich suma wyniesie n + (n + 1) + (n + 2) + (n + 3) = 4n + 6 Powiedziano nam, że ta suma wynosi -72 So kolor (biały) („XXX”) 4n + 6 = -72, co oznacza kolor (biały) („XXX”) 4n = -78 i kolor (biały) („XXX”) n = -19,5 Ale powiedziano nam, że liczby są liczbami całkowitymi, więc nie ma możliwości rozwiązania.
Suma czterech kolejnych liczb całkowitych nieparzystych to trzy więcej niż 5 razy najmniejsza z liczb całkowitych, jakie są liczby całkowite?
N -> {9,11,13,15} kolor (niebieski) („Budowanie równań”) Niech pierwszy nieparzysty termin będzie n Niech suma wszystkich warunków będzie s Następnie termin 1-> n termin 2-> n +2 termin 3-> n + 4 termin 4-> n + 6 Następnie s = 4n + 12 ............................ ..... (1) Biorąc pod uwagę, że s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Równanie (1) do (2) usuwając zmienna s 4n + 12 = s = 3 + 5n Zbieranie jak terminy 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ Tak więc terminy to: termin 1-> n-> 9 termin 2-> n + 2-> 11 term
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /