Odpowiedź:
Wyjaśnienie:
Przypomnij sobie, że stopień z pozostałe poli. jest zawsze
mniej niż że z dzielnik poli.
Dlatego kiedy
Jeśli
mieć,
Następnie przez
Podobnie,
Rozwiązywanie
To nam daje
Pilne! Wielomiany ax ^ 3-3x ^ 2 + 2x-3 i ax ^ 2-5x + a po podzieleniu przez x-2 zostawiają odpowiednio resztę p i q. Znajdź wartość a jeśli p = 3q. W jaki sposób? Pilne dzięki!
A = 19/7, p = 75/7, q = 25/7 Wywołanie f_1 (x) = ax ^ 3-3x ^ 2 + 2x-3 f_2 (x) = ax ^ 2-5x + a wiemy, że f_1 (x) = q_1 (x) (x-2) + p i f_2 (x) = q_2 (x) (x-2) + q tak f_1 (2) = 8a-12 + 4-3 = p f_2 (2 ) = 4a-10 + a = q, a także p = 3q Rozwiązywanie {(8a-11 = p), (5a-10 = q), (p = 3q):} otrzymujemy a = 19/7, p = 75 / 7, q = 25/7
„L zmienia się łącznie jako pierwiastek kwadratowy z b, a L = 72, gdy a = 8 ib = 9. Znajdź L, gdy a = 1/2 i b = 36? Y zmienia się łącznie jako sześcian x i pierwiastek kwadratowy z w, a Y = 128, gdy x = 2 iw w = 16. Znajdź Y, gdy x = 1/2 iw w = 64?
L = 9 "i" y = 4> "początkową instrukcją jest" Lpropasqrtb ", aby przekonwertować na równanie mnożone przez k stałą" "wariacji" rArrL = kasqrtb ", aby znaleźć k użyć podanych warunków" L = 72 ", gdy „a = 8” i „b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3„ równanie ”to kolor (czerwony) (pasek (ul (| kolor (biały) ( 2/2) kolor (czarny) (L = 3asqrtb) kolor (biały) (2/2) |))) „gdy„ a = 1/2 ”i„ b = 36 ”L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 kolorów (niebieski) ”------------------------------------------- ------------ ""
Gdy wielomian jest dzielony przez (x + 2), reszta to -19. Kiedy ten sam wielomian jest dzielony przez (x-1), reszta wynosi 2, jak określić resztę, gdy wielomian jest dzielony przez (x + 2) (x-1)?
Wiemy, że f (1) = 2 i f (-2) = - 19 z twierdzenia o pozostałościach Teraz znajdź resztę wielomianu f (x) po podzieleniu przez (x-1) (x + 2) Pozostała część będzie postać Ax + B, ponieważ jest pozostałością po podziale przez kwadrat. Możemy teraz pomnożyć dzielnik razy iloraz Q ... f (x) = Q (x-1) (x + 2) + Ax + B Następnie wstawić 1 i -2 dla x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Rozwiązywanie tych dwóch równań, otrzymujemy A = 7 i B = -5 Pozostała = Ax + B = 7x-5