Jaki jest okres f (theta) = tan ((12 theta) / 7) - sec ((7 theta) / 6)?

Jaki jest okres f (theta) = tan ((12 theta) / 7) - sec ((7 theta) / 6)?
Anonim

Odpowiedź:

# 84pi #

Wyjaśnienie:

Okres #tan ((12t) / 7) -> (7pi) / 12 #

Okres #sec ((7t) / 6) -> 6 (2pi) / 7 = (12pi) / 7 #

Okres f (t) -> najmniejsza wspólna wielokrotność # (7pi) / 12 i (12pi) / 7 #

# (7pi) / 12 # …… x … (12) (12) …. -> # 84pi #

# (12pi) / 7 #……. x …… (7) (7) ….. -> # 84pi #

Okres f (t) wynosi # 84pi #