Odpowiedź:
Liczby są
Wyjaśnienie:
Pozwolić
Pozwolić
Pozwolić
Dano nam, że suma liczb wynosi 126, więc możemy pisać
Połącz podobne terminy
Odejmować
Podziel obie strony według
Więc
Istnieją trzy kolejne liczby całkowite. jeśli suma odwrotności drugiej i trzeciej liczby całkowitej wynosi (7/12), jakie są trzy liczby całkowite?
2, 3, 4 Niech n będzie pierwszą liczbą całkowitą. Następnie trzy kolejne liczby całkowite to: n, n + 1, n + 2 Suma odwrotności 2 i 3: 1 / (n + 1) + 1 / (n + 2) = 7/12 Dodawanie ułamków: (( n + 2) + (n + 1)) / ((n + 1) (n + 2)) = 7/12 Pomnóż przez 12: (12 ((n + 2) + (n + 1))) / ( (n + 1) (n + 2)) = 7 Pomnóż przez ((n + 1) (n + 2)) (12 ((n + 2) + (n + 1))) = 7 ((n + 1) ) (n + 2)) Rozszerzenie: 12n + 24 + 12n + 12 = 7n ^ 2 + 21n + 14 Zbieranie jak warunki i uproszczenie: 7n ^ 2-3n-22 = 0 Współczynnik: (7n + 11) (n-2 ) = 0 => n = -11 / 7 i n = 2 Tylko n = 2 jest ważne, ponieważ wymagamy liczb całkowitych
Trzy kolejne liczby całkowite mogą być reprezentowane przez n, n + 1 i n + 2. Jeśli suma trzech kolejnych liczb całkowitych wynosi 57, jakie są liczby całkowite?
18,19,20 Suma jest dodatkiem liczby, więc suma n, n + 1 i n + 2 może być przedstawiona jako, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18, więc nasza pierwsza liczba całkowita to 18 (n), nasza druga to 19 (18 + 1), a nasza trzecia to 20 (18 + 2).
„Lena ma 2 kolejne liczby całkowite.Zauważa, że ich suma jest równa różnicy między ich kwadratami. Lena wybiera kolejne 2 kolejne liczby całkowite i zauważa to samo. Udowodnij algebraicznie, że jest to prawdą dla 2 kolejnych liczb całkowitych?
Prosimy odnieść się do Wyjaśnienia. Przypomnijmy, że kolejne liczby całkowite różnią się o 1. Stąd, jeśli m jest jedną liczbą całkowitą, to kolejna liczba całkowita musi być n + 1. Suma tych dwóch liczb całkowitych wynosi n + (n + 1) = 2n + 1. Różnica między ich kwadratami to (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zależnie od potrzeb! Poczuj radość matematyki!