Odpowiedź:
Wyjaśnienie:
Mianownik f (x) nie może wynosić zero, ponieważ spowodowałoby to niezdefiniowanie f (x). Zrównanie mianownika do zera i rozwiązywanie daje wartości, których x nie może być, a jeśli licznik jest niezerowy dla tych wartości, to są asymptotami pionowymi.
# "rozwiązać" x (x-5) = 0rArrx = 0, x = 5 "to asymptoty" #
# "poziome asymptoty występują jako" #
#lim_ (xto + -0), f (x) toc "(stała)" #
# "podziel terminy na licznik / mianownik na najwyższy" #
# „moc x czyli„ x ^ 2 #
#f (x) = (x / x ^ 2 + 3 / x ^ 2) / (x ^ 2 / x ^ 2-5 / x ^ 2) = (1 / x + 3 / x ^ 2) / (1 -5 / x ^ 2) #
# "jako" xto + -oo, f (x) do (0 + 0) / (1-0) #
# y = 0 "to asymptote" #
# „usuwalne nieciągłości występują, gdy wspólnym czynnikiem jest„ #
# "anulowane z licznika / mianownika. To nie jest" #
# „sprawa tutaj nie ma żadnych nieciągłości” # graph {(x + 3) / (x (x-5)) -10, 10, -5, 5}
Jakie są asymptoty i usuwalne nieciągłości f (x) = (1 - 4x ^ 2) / (1 - 2x)?
Funkcja będzie nieciągła, gdy mianownik wynosi zero, co ma miejsce, gdy x = 1/2 As | x | staje się bardzo duże wyrażenie dąży do + -2x. Nie ma więc asymptot, ponieważ wyrażenie nie dąży do określonej wartości. Wyrażenie można uprościć, zauważając, że licznik jest przykładem różnicy dwóch kwadratów. Następnie f (x) = ((1-2x) (1 + 2x)) / ((1-2x)) Współczynnik (1-2x) anuluje się, a wyrażenie staje się f (x) = 2x + 1, które jest równanie linii prostej. Nieciągłość została usunięta.
Jakie są asymptoty i usuwalne nieciągłości f (x) = (1-5x) / (1 + 2x)?
„asymptota pionowa przy„ x = 1/2 ”asymptota pozioma przy„ y = -5 / 2 Mianownik f (x) nie może wynosić zero, ponieważ spowodowałoby to niezdefiniowanie f (x). Zrównanie mianownika do zera i rozwiązanie daje wartość, której nie może być x, a jeśli licznik jest niezerowy dla tej wartości, to jest asymptotą pionową. „rozwiązać” 1 + 2x = 0rArrx = -1 / 2 „jest asymptotą” „asymptoty poziome występują jako„ lim_ (xto + -oo), f (x) toc ”(stała)„ ”dzielą terminy na licznik / mianownik przez x "f (x) = (1 / x- (5x) / x) / (1 / x + (2x) / x) = (1 / x-5) / (1 / x + 2) jako xto + -oo, f (x) do (0-5) / (0 + 2) rArry = -5 /
Jakie są asymptoty i usuwalne nieciągłości f (x) = 1 / (8x + 5) -x?
Asymptote przy x = -5 / 8 Brak usuwalnych nieciągłości Nie można anulować żadnych czynników w mianowniku za pomocą czynników w liczniku, więc nie ma usuwalnych nieciągłości (otworów). Aby rozwiązać asymptoty, ustaw licznik równy 0: 8x + 5 = 0 8x = -5 x = -5 / 8 wykres {1 / (8x + 5) -x [-10, 10, -5, 5]}