Odpowiedź:
Podczas robienia problemów, takich jak ten, najprościej jest zapisać równanie za pomocą wzoru y = a
Wyjaśnienie:
W y = a
32 = a
32 = a
32 = 100a + 5
27 = 100a
a =
y =
Twoje ostatnie równanie to y =
Mam nadzieję, że teraz rozumiesz.
Załóżmy, że parabola ma wierzchołek (4,7) i przechodzi przez punkt (-3,8). Jakie jest równanie paraboli w formie wierzchołka?
W rzeczywistości istnieją dwie parabole (formy wierzchołków), które spełniają twoje wymagania: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Istnieją dwie formy wierzchołków: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h gdzie (h, k) jest wierzchołkiem, a wartość „a” można znaleźć, używając jednego innego punktu. Nie mamy żadnego powodu, aby wykluczyć jedną z form, dlatego podany wierzchołek zastępujemy obydwoma: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Rozwiąż obie wartości a używając punktu (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7 = a_2 (1) ^ 2 a_1 = 1/49 i a_2 = -7 Ot
Jakie jest równanie paraboli, która ma wierzchołek (0, 0) i przechodzi przez punkt (-1, -64)?
F (x) = - 64x ^ 2 Jeśli wierzchołek jest na (0 | 0), f (x) = ax ^ 2 Teraz tylko podpiszemy punkt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Jakie jest równanie paraboli, która ma wierzchołek w (0, 0) i przechodzi przez punkt (-1, -4)?
Y = -4x ^ 2> „równanie paraboli w” kolorze (niebieski) „forma wierzchołka” to. • kolor (biały) (x) y = a (xh) ^ 2 + k "gdzie" (h, k) "oznaczają współrzędne wierzchołka i" "jest mnożnikiem" "tutaj" (h, k) = (0,0) "w ten sposób" y = ax ^ 2 ", aby znaleźć substytut" (-1, -4) "do równania" -4 = ay = -4x ^ 2larrcolor (niebieski) "równanie paraboli" graph { -4x ^ 2 [-10, 10, -5, 5]}