Jeśli funkcja f (x) ma domenę -2 <= x <= 8 i zakres -4 <= y <= 6, a funkcja g (x) jest określona wzorem g (x) = 5f ( 2x)) a następnie jaka jest domena i zakres g?
Poniżej. Użyj podstawowych przekształceń funkcji, aby znaleźć nową domenę i zakres. 5f (x) oznacza, że funkcja jest rozciągnięta pionowo pięciokrotnie. Dlatego nowy zakres będzie obejmował interwał pięciokrotnie większy niż oryginał. W przypadku f (2x) do funkcji stosuje się rozciągnięcie o połowę o współczynnik. Dlatego krańce domeny są zmniejszone o połowę. Zrobione!
Kula ma prędkość 250 m / s, gdy opuszcza karabin. Jeśli karabin jest wystrzelony 50 stopni od ziemi a. Jaki jest czas lotu w ziemi? b. Jaka jest maksymalna wysokość? do. Jaki jest zasięg?
Za. 39,08 „sekundy” b. 1871 „metr” c. 6280 „metr” v_x = 250 * cos (50 °) = 160,697 m / s v_y = 250 * sin (50 °) = 191,511 m / s v_y = g * t_ {spadek} => t_ {spadek} = v_y / g = 191,511 / 9,8 = 19,54 s => t_ {lot} = 2 * t_ {spadek} = 39,08 sh = g * t_ {spadek} ^ 2/2 = 1871 m „zasięg” = v_x * t_ {lot} = 160 697 * 39,08 = 6280 m "z" g = "stała grawitacji = 9,8 m / s²" v_x = "pozioma składowa prędkości początkowej" v_y = "składowa pionowa prędkości początkowej" h = "wysokość w metrze (m)" t_ { fall} = "czas, aby upaść z najwyższego punktu na ziemię w s
Zakres temperatury w pomieszczeniu wynosi od 20 ° C do 25 ° C. Używając wzoru F -32 = 1,8C, jaki jest zakres temperatury pokojowej w ° F?
Temp. Pomieszczenia wynosi 68 ° F do 77 ° F Wtyczka 20 i 25 dla C 20: F-32 = 1,8 * 20 => F = 36 + 32 = 68 25: F-32 = 1,8 * 25 => F = 45 + 32 = 77