Odpowiedź:
Istnieje nieskończenie wiele takich linii. Zobacz wyjaśnienie.
Wyjaśnienie:
Istnieje nieskończenie wiele linii prostopadłych do danej linii (tutaj
Dowolna linia w formularzu
Bez dodatkowych informacji (jak punkt należący do linii prostopadłej) możliwa jest tylko taka ogólna odpowiedź.
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (3,7), (5,8)?
Y = -2x Przede wszystkim musimy znaleźć gradient linii przechodzącej przez (3,7) i (5,8) „gradient” = (8-7) / (5-3) „gradient” = 1 / 2 Skoro nowa linia jest PERPENDICULARNA do linii przechodzącej przez 2 punkty, możemy użyć tego równania m_1m_2 = -1, gdzie gradienty dwóch różnych linii po pomnożeniu powinny być równe -1, jeśli linie są prostopadłe do siebie, tj. pod właściwymi kątami . stąd twoja nowa linia będzie miała gradient 1 / 2m_2 = -1 m_2 = -2 Teraz możemy użyć formuły gradientu punktu, aby znaleźć twoje równanie linii y-0 = -2 (x-0) y = - 2x
Jakie jest równanie linii, która przechodzi przez początek i jest prostopadłe do linii, która przechodzi przez następujące punkty: (9,4), (3,8)?
Patrz poniżej Nachylenie linii przechodzącej przez (9,4) i (3,8) = (4-8) / (9-3) -2/3, a więc dowolna linia prostopadła do przechodzącej linii (9,4 ) i (3,8) będą miały nachylenie (m) = 3/2 Stąd mamy znaleźć równanie linii przechodzącej przez (0,0) i mając nachylenie = 3/2 wymagane równanie jest (y-0 ) = 3/2 (x-0) ie2y-3x = 0
Jedna linia przechodzi przez punkty (2,1) i (5,7). Kolejna linia przechodzi przez punkty (-3,8) i (8,3). Czy linie są równoległe, prostopadłe lub żadne?
Ani równoległe ani prostopadłe Jeśli gradient każdej linii jest taki sam, to są równoległe. Jeśli gradient jest ujemną odwrotnością drugiego, są one prostopadłe do siebie. To znaczy: jeden jest m ", a drugi" -1 / m Niech linia 1 będzie L_1 Niech linia 2 będzie L_2 Niech gradient linii 1 będzie m_1 Niech gradient linii 2 będzie m_2 "gradient" = ("Zmień y -axis ") / (" Zmiana w osi x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ......... (2) Gradienty nie są takie same, więc nie są równoleg