Odpowiedź:
Tempo zmian jest
Wyjaśnienie:
Biorąc pod uwagę linię prostą, szybkość zmiany y na jednostkę x jest taka sama jak nachylenie linii.
Równanie prostej między dwoma punktami
W tym przykładzie mamy punkty:
Dlatego w tym przykładzie szybkość zmian wynosi
Niech f (x) = (5/2) sqrt (x). Szybkość zmiany f przy x = c jest dwukrotnie większa niż szybkość zmiany przy x = 3. Jaka jest wartość c?
Zaczynamy od rozróżnienia, stosując regułę produktu i regułę łańcucha. Niech y = u ^ (1/2) i u = x. y '= 1 / (2u ^ (1/2)) i u' = 1 y '= 1 / (2 (x) ^ (1/2)) Teraz, według reguły produktu; f '(x) = 0 xx sqrt (x) + 1 / (2 (x) ^ (1/2)) xx 5/2 f' (x) = 5 / (4sqrt (x)) Szybkość zmiany w dowolny punkt funkcji jest podany przez oszacowanie x = a do pochodnej. Pytanie mówi, że tempo zmiany przy x = 3 jest dwukrotnie wyższe niż tempo zmiany przy x = c. Naszym pierwszym zadaniem jest ustalenie szybkości zmian przy x = 3. rc = 5 / (4sqrt (3)) Szybkość zmiany przy x = c wynosi wtedy 10 / (4sqrt (3)) = 5 /
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (8, -3), (1,0)?
7x-3y + 1 = 0 Nachylenie linii łączącej dwa punkty (x_1, y_1) i (x_2, y_2) jest podane przez (y_2-y_1) / (x_2-x_1) lub (y_1-y_2) / (x_1-x_2 ) Ponieważ punkty to (8, -3) i (1, 0), nachylenie linii łączącej je zostanie podane przez (0 - (- 3)) / (1-8) lub (3) / (- 7) tj. -3/7. Produkt nachylenia dwóch prostopadłych linii wynosi zawsze -1. Stąd nachylenie linii prostopadłej do niego będzie 7/3 i stąd równanie w postaci nachylenia można zapisać jako y = 7 / 3x + c Gdy przechodzi przez punkt (0, -1), umieszczając te wartości w powyższym równaniu, otrzymamy -1 = 7/3 * 0 + c lub c = 1 Stąd pożądane równanie bę
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (13,20), (16,1)?
Y = 3/19 * x-1 Nachylenie linii przechodzi przez (13,20) i (16,1) wynosi m_1 = (1-20) / (16-13) = - 19/3 Znamy stan perpedicularity między dwiema liniami jest iloczynem ich nachyleń równych -1: .m_1 * m_2 = -1 lub (-19/3) * m_2 = -1 lub m_2 = 3/19 Więc linia przechodząca przez (0, -1 ) jest y + 1 = 3/19 * (x-0) lub y = 3/19 * x-1 wykres {3/19 * x-1 [-10, 10, -5, 5]} [Ans]