Zaczynamy od rozróżnienia, stosując regułę produktu i regułę łańcucha.
Pozwolić
Teraz według reguły produktu;
Szybkość zmiany w dowolnym punkcie funkcji jest podana przez ocenę
Tempo zmian na
A więc wartość
Mam nadzieję, że to pomoże!
Długość prostokąta jest dwukrotnie większa niż szerokość. Jeśli powierzchnia prostokąta jest mniejsza niż 50 metrów kwadratowych, jaka jest największa szerokość prostokąta?
Nazwamy tę szerokość = x, co sprawia, że długość = 2x Powierzchnia = długość razy szerokość lub: 2x * x <50-> 2x ^ 2 <50-> x ^ 2 <25-> x <sqrt25-> x <5 Odpowiedź: największa szerokość to (tuż poniżej) 5 metrów. Uwaga: W czystych matematyce, x ^ 2 <25 również da odpowiedź: x> -5 lub połączone -5 <x <+5 W tym praktycznym przykładzie odrzucamy drugą odpowiedź.
Obwód trójkąta wynosi 29 mm. Długość pierwszej strony jest dwukrotnie większa niż długość drugiej strony. Długość trzeciej strony wynosi 5 więcej niż długość drugiej strony. Jak znaleźć boczne długości trójkąta?
S_1 = 12 s_2 = 6 s_3 = 11 Obwód trójkąta jest sumą długości wszystkich jego boków. W tym przypadku podaje się, że obwód wynosi 29 mm. Więc w tym przypadku: s_1 + s_2 + s_3 = 29 Więc rozwiązywanie dla długości boków, tłumaczymy instrukcje w podanej formie równania. „Długość pierwszej strony jest dwa razy dłuższa niż druga strona” Aby rozwiązać ten problem, przypisujemy zmienną losową s_1 lub s_2. W tym przykładzie pozwoliłbym x być długością drugiej strony, aby uniknąć ułamków w moim równaniu. więc wiemy, że: s_1 = 2s_2, ale ponieważ pozwoliliśmy s_2 być x, teraz wiemy, że: s_1 = 2x s
Ta liczba jest mniejsza niż 200 i większa niż 100. Cyfra jedynki jest o 5 mniejsza niż 10. Cyfra dziesiątek jest o 2 większa niż cyfra jedności. Jaki jest numer?
175 Niech liczba będzie HTO Ones cyfra = O Biorąc pod uwagę, że O = 10-5 => O = 5 Podano również, że cyfra dziesiątek T wynosi 2 więcej niż cyfra jedności O => cyfra dziesiątek T = O + 2 = 5 + 2 = 7:. Liczba to H 75 Dana jest również taka, że „liczba jest mniejsza niż 200 i większa niż 100” => H może mieć tylko wartość = 1 Otrzymujemy naszą liczbę jako 175