Odpowiedź:
Długość segmentu to
Wyjaśnienie:
Wzór na obliczanie odległości między dwoma punktami to:
Zastępowanie wartości z punktów problemu i rozwiązywanie daje:
Martha bawi się Lego. Ma po 300 sztuk każdego typu - 2 punkty, 4 punkty, 8 punktów. Niektóre cegły używane do tworzenia zombie. Używa 2 punktów, 4 punktów, 8 punktów w stosunku 3: 1: 2, gdy skończy dwa razy więcej niż 2 punkty w 2 punktach. Ile pozostało 8 punktów?
Pozostała liczba 8 spotów wynosi 225 Niech identyfikator spotu typu 2 będzie S_2 larr 300 na początku Niech identyfikator typu 4 spot będzie na początku S_4 larr300 Niech identyfikator spotu typu 8 to S_8larr 300 na początku Zombie -> S_2: S_4: S_8 -> 3: 2: 1 Pozostało: S_2: S_4: S_8 -> 1: 2 :? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Uwaga, że mamy: kolor (brązowy) („Jak zgadnąć”) zombiecolor (biały) („dd”) -> 3: 2: 1 pozostały (-> 1: 2 :?) kolor (biały) („ddddddd”) -> 4: 4 :? Ponieważ suma pionowa wszystkich różnych współczynników typów miała tę samą wartość, podejrzewam, że o
Jaka jest długość odcinka łączącego punkty (-3, -4) i (2, -5)?
Sqrt26 Użyj wzoru odległości: sqrt ((y_2-y_1) ^ 2 + (x_2-x_1) ^ 2 Podłącz swoje wartości: sqrt ((- 5 - (- 4)) ^ 2+ (2 - (- 3)) ^ 2 Uproszczenie: sqrt ((- 1) ^ 2 + (5) ^ 2) Uproszczenie: sqrt (1 + 25) Uproszczenie: sqrt26 Wystarczy zwrócić uwagę na pozytywy i negatywy (np. Odejmowanie liczby ujemnej jest równoważne dodaniu) .
Segment linii ma punkty końcowe w (a, b) i (c, d). Segment linii jest rozszerzony o współczynnik r wokół (p, q). Jakie są nowe punkty końcowe i długość segmentu linii?
(a, b) do ((1-r) p + ra, (1-r) q + rb), (c, d) do ((1-r) p + rc, (1-r) q + rd), nowa długość l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Mam teorię, że wszystkie te pytania są tutaj, więc jest coś dla początkujących. Zrobię tutaj ogólny przypadek i zobaczę, co się stanie. Tłumaczymy płaszczyznę tak, że punkt dylatacji P odwzorowuje początek. Następnie rozszerzenie skaluje współrzędne o współczynnik r. Następnie tłumaczymy płaszczyznę z powrotem: A '= r (A - P) + P = (1-r) P + r A To równanie parametryczne dla linii między P i A, gdzie r = 0 daje P, r = 1 podając A i r = r podając A ', obraz A pod rozszerz