Odpowiedź:
Zobacz poniżej.
Wyjaśnienie:
Minimalna wartość
Od
Jeśli uwzględni się zarówno pozytywne, jak i negatywne wyniki, zakres wynosi:
Dla dodatniego wyjścia
Dla wyniku negatywnego
Teoretycznie
Co to jest (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Bierzemy, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (anuluj (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - anuluj (2sqrt15) -5 + 2 * 3 + anuluj (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Zauważ, że jeśli w mianownikach są (sqrt3 + sqrt (3 + sqrt5)) i (s
Jaka jest domena i zakres 3x-2 / 5x + 1 oraz domena i zakres odwrotności funkcji?
Domeną są wszystkie reale z wyjątkiem -1/5, która jest zakresem odwrotności. Zakres to wszystkie reale z wyjątkiem 3/5, który jest domeną odwrotności. f (x) = (3x-2) / (5x + 1) jest zdefiniowane i wartości rzeczywiste dla wszystkich x z wyjątkiem -1/5, więc jest to domena f i zakres f ^ -1 Ustawienie y = (3x -2) / (5x + 1) i rozwiązywanie dla x wydajności 5xy + y = 3x-2, więc 5xy-3x = -y-2, a zatem (5y-3) x = -y-2, więc w końcu x = (- y-2) / (5y-3). Widzimy, że y! = 3/5. Tak więc zakres f to wszystkie reale z wyjątkiem 3/5. Jest to również domena f ^ -1.
Jaki jest zakres funkcji y = sqrt (1-cosxsqrt (1-cosx (sqrt (1-cosx ...... oo?
Potrzebuję podwójnego sprawdzenia. >