Odpowiedź:
Równanie linii prostopadłej do
Wyjaśnienie:
Równanie jest równoważne
Dzieje się tak, ponieważ dla dwóch linii jest prostopadła, iloczyn ich nachyleń powinien być
Używając tego łatwo jest wydedukować te linie
Umieszczanie wartości
Stąd równanie linii prostopadłej do
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (8, -3), (1,0)?
7x-3y + 1 = 0 Nachylenie linii łączącej dwa punkty (x_1, y_1) i (x_2, y_2) jest podane przez (y_2-y_1) / (x_2-x_1) lub (y_1-y_2) / (x_1-x_2 ) Ponieważ punkty to (8, -3) i (1, 0), nachylenie linii łączącej je zostanie podane przez (0 - (- 3)) / (1-8) lub (3) / (- 7) tj. -3/7. Produkt nachylenia dwóch prostopadłych linii wynosi zawsze -1. Stąd nachylenie linii prostopadłej do niego będzie 7/3 i stąd równanie w postaci nachylenia można zapisać jako y = 7 / 3x + c Gdy przechodzi przez punkt (0, -1), umieszczając te wartości w powyższym równaniu, otrzymamy -1 = 7/3 * 0 + c lub c = 1 Stąd pożądane równanie bę
Jakie jest równanie linii przechodzącej przez (0, -1) i jest prostopadłe do linii przechodzącej przez następujące punkty: (13,20), (16,1)?
Y = 3/19 * x-1 Nachylenie linii przechodzi przez (13,20) i (16,1) wynosi m_1 = (1-20) / (16-13) = - 19/3 Znamy stan perpedicularity między dwiema liniami jest iloczynem ich nachyleń równych -1: .m_1 * m_2 = -1 lub (-19/3) * m_2 = -1 lub m_2 = 3/19 Więc linia przechodząca przez (0, -1 ) jest y + 1 = 3/19 * (x-0) lub y = 3/19 * x-1 wykres {3/19 * x-1 [-10, 10, -5, 5]} [Ans]