Odpowiedź:
Wyjaśnienie:
Ponieważ krzywa jest wyrażona w kategoriach dwóch funkcji
Podczas
Patrzeć na
Jak odróżnić następujące równanie parametryczne: x (t) = t / (t-4), y (t) = 1 / (1-t ^ 2)?
Dy / dx = - (t (t-4) ^ 2) / (2 (1-t ^ 2) ^ 2) = - t / 2 ((t-4) / (1-t ^ 2)) ^ 2 dy / dx = (y '(t)) / (x' (t)) y (t) = 1 / (1-t ^ 2) y '(t) = ((1-t ^ 2) d / dt [1] -1d / dt [1-t ^ 2]) / (1-t ^ 2) ^ 2 kolor (biały) (y '(t)) = (- (- 2t)) / (1-t ^ 2) ^ 2 kolor (biały) (y '(t)) = (2t) / (1-t ^ 2) ^ 2 x (t) = t / (t-4) x' (t) = ((t -4) d / dt [t] -td / dt [t-4]) / (t-4) ^ 2 kolor (biały) (x '(t)) = (t-4-t) / (t 4) ^ 2 kolor (biały) (x '(t)) = - 4 / (t-4) ^ 2 dy / dx = (2t) / (1-t ^ 2) ^ 2 -: - 4 / (t -4) ^ 2 = (2t) / (1-t ^ 2) ^ 2xx- (t-4) ^ 2/4 = (- 2t (t-4) ^ 2) / (4 (1-t ^ 2) ) ^ 2) = - (t (t-4
Tomas napisał równanie y = 3x + 3/4. Kiedy Sandra napisała swoje równanie, odkryli, że jej równanie ma wszystkie te same rozwiązania, co równanie Tomasa. Które równanie może być równaniem Sandry?
4y = 12x +3 12x-4y +3 = 0 Równanie może być podane w wielu formach i nadal oznacza to samo. y = 3x + 3/4 "" (znany jako forma nachylenia / przecięcia). Mnożona przez 4, aby usunąć ułamek, daje: 4y = 12x +3 "" rarr 12x-4y = -3 "" (formularz standardowy) 12x- 4y +3 = 0 "" (forma ogólna) Wszystkie są w najprostszej formie, ale moglibyśmy również mieć ich nieskończenie różne. 4y = 12x + 3 można zapisać jako: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 itd.
Jak odróżnić następujące równanie parametryczne: x (t) = tlnt, y (t) = koszt tsin ^ 2t?
(df (t)) / dt = (ln (t) + 1, -sin (t) - sin ^ 2 (t) - 2tsin (t) cos (t)) Rozróżnienie równania parametrycznego jest tak łatwe, jak rozróżnienie poszczególnych osób równanie dla jego składników. Jeśli f (t) = (x (t), y (t)) to (df (t)) / dt = ((dx (t)) / dt, (dy (t)) / dt) Więc najpierw określamy nasze pochodne składowe: (dx (t)) / dt = ln (t) + t / t = ln (t) + 1 (dy (t)) / dt = -sin (t) - sin ^ 2 (t) - 2tsin (t) cos (t) Dlatego końcowe pochodne krzywej parametrycznej są po prostu wektorem pochodnych: (df (t)) / dt = ((dx (t)) / dt, (dy (t)) / dt) = (ln (t) + 1, -sin (t) - sin ^ 2 (t) -