Odpowiedź:
Wyjaśnienie:
Nachylenie linii jest znane jako
# 1/0 lub 6/0 lub 25/0 #
Oznacza to, że jest wzrost (
Aby linia przekroczyła punkt (
Gdy nachylenie jest nieokreślone, nie musisz go zapisywać, więc równanie dla linii jest
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Jakie jest równanie linii, która przechodzi przez punkt (7, 6) i ma nieokreślone nachylenie?
X = 7 Nieokreślone nachylenie jest wtedy, gdy wykres linii jest poziomy i występuje, gdy funkcja jest x = 0,1,2,3, ..., xRR. Aby więc przejść przez (7,6), linia musi być zatem x = 7.
Jakie jest nachylenie linii przechodzącej przez punkt (-1, 1) i jest równoległe do linii przechodzącej przez (3, 6) i (1, -2)?
Twoje nachylenie wynosi (-8) / - 2 = 4. Zbocza równoległych linii są takie same, jak mają ten sam wzrost i przebiegają na wykresie. Nachylenie można znaleźć za pomocą „nachylenia” = (y_2-y_1) / (x_2-x_1). Dlatego, jeśli wstawimy liczby linii równoległej do oryginału, otrzymamy „nachylenie” = (-2 - 6) / (1-3) To następnie upraszcza do (-8) / (- 2). Twój wzrost lub kwota, o którą wzrasta, wynosi -8, a twój bieg lub kwota, o którą idzie, wynosi -2.