Odpowiedź:
Styczne są
Wyjaśnienie:
Niech nachylenie stycznej będzie
Teraz zobaczmy punkt przecięcia tej krzywej stycznej i danej
to znaczy
lub
Powinno to dać dwie wartości
lub
lub
to znaczy
=
to znaczy
a zatem styczne są
i
wykres {(25x-9y + 54) (x-y + 6) (y- (x + 2) / (x + 3)) = 0 -12,58, 7,42, -3,16, 6,84}
Równanie linii to 2x + 3y - 7 = 0, znajdź: - (1) nachylenie linii (2) równanie linii prostopadłej do danej linii i przechodzące przez przecięcie linii x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 kolor (biały) („ddd”) -> kolor (biały) („ddd”) y = 3 / 2x + 1 Pierwsza część zawiera wiele szczegółów pokazujących działanie pierwszych zasad. Po przyzwyczajeniu się do nich i użyciu skrótów użyjesz znacznie mniej linii. kolor (niebieski) („Określ punkt przecięcia równań początkowych”) x-y + 2 = 0 ”„ ....... Równanie (1) 3x + y-10 = 0 ”„ .... Równanie ( 2) Odejmij x od obu stron równania (1), podając -y + 2 = -x Pomnóż obie strony przez (-1) + y-2 = + x „” .......... Równanie (1_a ) Używanie Eqn (1_a) zastępuje x w Eqn (2) kolor (zielony) (3color (czerwony
Niech P (x_1, y_1) będzie punktem i niech l będzie linią z równaniem ax + o + c = 0.Pokaż odległość d od P-> l jest podawana przez: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Znajdź odległość d punktu P (6,7) od linii l z równaniem 3x + 4y = 11?
D = 7 Niech l-> a x + b y + c = 0 i p_1 = (x_1, y_1) punkt nie na l. Załóżmy, że b ne 0 i wywołanie d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 po zastąpieniu y = - (a x + c) / b na d ^ 2 mamy d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Następnym krokiem jest znalezienie minimum d ^ 2 względem x, więc znajdziemy x takie, że d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. To miejsce dla x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Teraz, zastępując tę wartość d ^ 2, otrzymujemy d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) więc d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) Teraz podane l-
Krzywa jest definiowana przez parametryczne równanie x = t ^ 2 + t - 1 oraz y = 2t ^ 2 - t + 2 dla wszystkich t. i) pokaż, że A (-1, 5_ leży na krzywej. ii) znajdź dy / dx. iii) znajdź równanie stycznej do krzywej w punkcie. A. ?
Mamy równanie parametryczne {(x = t ^ 2 + t-1), (y = 2t ^ 2-t + 2):}. Aby pokazać, że (-1,5) leży na krzywej zdefiniowanej powyżej, musimy pokazać, że istnieje pewna t_A taka, że w t = t_A, x = -1, y = 5. Zatem {(-1 = t_A ^ 2 + t_A-1), (5 = 2t_A ^ 2-t_A + 2):}. Rozwiązanie górnego równania ujawnia, że t_A = 0 lub „-1. Rozwiązanie dna ujawnia, że t_A = 3/2 ”lub„ -1. Następnie, przy t = -1, x = -1, y = 5; i dlatego (-1,5) leży na krzywej. Aby znaleźć nachylenie przy A = (- 1,5), najpierw znajdujemy („d” y) / („d” x). Reguła łańcucha („d” y) / („d” x) = („d” y) / („d” t) * („d” t) / („d” x) = („d” y) / („d”