Odpowiedź:
Wyjaśnienie:
Najpierw zastępujemy:
Wykonaj drugą substytucję:
Podziel za pomocą ułamków częściowych:
Teraz mamy:
Zastępuje z powrotem
Zastępuje z powrotem
Co to jest całka int ((x ^ 2-1) / sqrt (2x-1)) dx?
Int (x ^ 2-1) / sqrt (2x-1) dx = 1/20 (2x-1) ^ (5/2) +1/6 (2x-1) ^ (3/2) -3 / 4sqrt (2x-1) + C Naszym dużym problemem w tej całce jest root, więc chcemy się go pozbyć. Możemy to zrobić, wprowadzając substytucję u = sqrt (2x-1). Pochodna jest wtedy (du) / dx = 1 / sqrt (2x-1) Więc dzielimy przez (i pamiętajmy, że dzielenie przez odwrotność jest takie samo jak mnożenie tylko przez mianownik), aby zintegrować w odniesieniu do u: int t x ^ 2-1) / sqrt (2x-1) dx = int (x ^ 2-1) / anuluj (sqrt (2x-1)) anuluj (sqrt (2x-1)) du = int x ^ 2-1 du Teraz wszystko, co musimy zrobić, to wyrazić x ^ 2 w kategoriach u (ponieważ nie można z
W jaki sposób można ustalić, czy niewłaściwa całka jest zbieżna lub rozbieżna int 1 / [sqrt x] od 0 do nieskończoności?
Całka się rozbiega. Możemy użyć testu porównawczego dla całek niewłaściwych, ale w tym przypadku całka jest tak prosta do oceny, że możemy ją po prostu obliczyć i sprawdzić, czy wartość jest ograniczona. int_0 ^ oo1 / sqrtx dx = int_0 ^ oox ^ (- 1/2) = [2sqrtx] _0 ^ oo = lim_ (x-> oo) (2sqrtx) -2sqrt (0) = lim_ (x-> oo) ( 2sqrtx) = oo Oznacza to, że całka rozbiega się.
Co to jest całka int (3x + 1) / (2x ^ 2 -6x +5)) dx?
Zobacz odpowiedź poniżej: