Odpowiedź:
Wyjaśnienie:
Dany:
Pomnożenie przez cały czas
Zmiana układu
Odpowiedź:
Wyjaśnienie:
# y = (x + 4) / (x-3) -6 #
# „dodaj 6 do obu stron” #
# rArry + 6 = (x + 4) / (x-3) larrcolor (niebieski) „mnoży krzyż” #
# (y + 6) (x-3) = x + 4larrcolor (niebieski) „rozwiń czynniki po lewej stronie” #
# xy-3y + 6x-18 = x + 4 #
# "zbieraj terminy w x po lewej stronie" #
# xy + 6x-x = 4 + 18 + 3y #
# rArrxy + 5x = 22 + 3y #
# „wyjmij” kolor (niebieski) „wspólny współczynnik x” #
#x (y + 5) = 22 + 3y #
# "podziel obie strony przez" (y + 5) #
# rArrx = (3y + 22) / (y + 5) #
Tomas napisał równanie y = 3x + 3/4. Kiedy Sandra napisała swoje równanie, odkryli, że jej równanie ma wszystkie te same rozwiązania, co równanie Tomasa. Które równanie może być równaniem Sandry?
4y = 12x +3 12x-4y +3 = 0 Równanie może być podane w wielu formach i nadal oznacza to samo. y = 3x + 3/4 "" (znany jako forma nachylenia / przecięcia). Mnożona przez 4, aby usunąć ułamek, daje: 4y = 12x +3 "" rarr 12x-4y = -3 "" (formularz standardowy) 12x- 4y +3 = 0 "" (forma ogólna) Wszystkie są w najprostszej formie, ale moglibyśmy również mieć ich nieskończenie różne. 4y = 12x + 3 można zapisać jako: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 itd.
Które stwierdzenie najlepiej opisuje równanie (x + 5) 2 + 4 (x + 5) + 12 = 0? Równanie ma postać kwadratową, ponieważ można je przepisać jako równanie kwadratowe z podstawieniem u u = (x + 5). Równanie ma postać kwadratową, ponieważ gdy jest rozszerzone,
Jak wyjaśniono poniżej, zastąpienie u określi to jako kwadratowe u. Dla kwadratu w x, jego ekspansja będzie miała najwyższą moc x jako 2, najlepiej określi ją jako kwadratową w x.
Napisz równanie punkt-nachylenie równania o danym nachyleniu, które przechodzi przez wskazany punkt. A.) linia z nachyleniem -4 przechodzącym przez (5,4). a także B.) linia z nachyleniem 2 przechodzącym przez (-1, -2). proszę o pomoc, to mylące?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "równanie linii w" kolorze (niebieski) "forma punkt-nachylenie" jest. • kolor (biały) (x) y-y_1 = m (x-x_1) "gdzie m jest nachyleniem i" (x_1, y_1) "punkt na linii" (A) "podany" m = -4 "i „(x_1, y_1) = (5,4)” zastępując te wartości równaniem daje „y-4 = -4 (x-5) larrcolor (niebieski)„ w formie punkt-nachylenie ”(B)„ podany ”m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (niebieski) " w formie punkt-nachylenie ”