Odpowiedź:
Wyjaśnienie:
Teraz, używając
Odpowiedź:
Według wzoru sumy kątowej
Wyjaśnienie:
Te pytania są dość mylące z funky notacją funkcji odwrotnej. Prawdziwym problemem w tego typu pytaniach jest zazwyczaj traktowanie funkcji odwrotnych jako wielowartościowe, co może oznaczać, że wyrażenie ma również wiele wartości.
Możemy również spojrzeć na wartość
W każdym razie jest to cosinus sumy dwóch kątów, a to oznacza, że stosujemy wzór sumy kątów:
Cosinus odwrotnego cosinusu i sinus odwrotny sinus są łatwe. Cosinus odwrotnego sinusu i sinus odwrotnego cosinusa jest również prosty, ale pojawia się problem wielowartościowy.
Zasadniczo będą dwa kąty niebędące cerminalnymi, które dzielą dany cosinus, negacje siebie, których sinusy będą wzajemnymi negacjami. Zasadniczo będą dwa kąty nie-końcowe, które dzielą dany sinus, dodatkowe kąty, które będą miały cosinusy, które są wzajemnymi negacjami. Więc w obie strony mamy się
Weźmy
Naprawdę nie musimy brać pod uwagę kąta. Możemy myśleć o trójkącie prawym z przeciwną 1 i przeciwprostokątną 2 i wymyślić sąsiednie
Podobnie,
Pokaż, że cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jestem trochę zdezorientowany, jeśli zrobię Cos²4π / 10 = cos² (π-6π / 10) i cos²9π / 10 = cos² (π-π / 10), zmieni się ono w cos (180 ° -heta) = - costheta w drugi kwadrant. Jak mogę udowodnić pytanie?
Patrz poniżej. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Liczba wartości parametru alfa w [0, 2pi], dla których funkcja kwadratowa (sin alpha) x ^ 2 + 2 cos alfa x + 1/2 (cos alfa + sin alfa) jest kwadratem funkcji liniowej jest ? (A) 2 (B) 3 (C) 4 (D) 1
Zobacz poniżej. Jeśli wiemy, że wyrażenie musi być kwadratem postaci liniowej, to (sin alpha) x ^ 2 + 2 cos alfa x + 1/2 (cos alfa + sin alfa) = (ax + b) ^ 2, a następnie grupujemy współczynniki mieć (alfa ^ 2-sin (alfa)) x ^ 2 + (2ab-2cos alfa) x + b ^ 2-1 / 2 (sinalpha + cosalpha) = 0, więc warunek jest {(a ^ 2-sin (alfa ) = 0), (ab-cos alfa = 0), (b ^ 2-1 / 2 (sinalpha + cosalpha) = 0):} Można to rozwiązać uzyskując najpierw wartości a, b i podstawiając. Wiemy, że ^ 2 + b ^ 2 = sin alfa + 1 / (sin alpha + cos alpha) i ^ 2b ^ 2 = cos ^ 2 alfa Teraz rozwiązywanie z ^ 2- (a ^ 2 + b ^ 2) z + a ^ 2b ^ 2 = 0. Rozwiązując
Jak weryfikujesz [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Dowód poniżej Ekspansja ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2) i możemy to wykorzystać: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (tożsamość: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB