Odpowiedź:
Wyjaśnienie:
Jeden radian byłby odpowiednikiem mówienia o promieniu okręgu i wciskania go w obwód okręgu, zakrzywiając go.
Promień tego okręgu wynosi 12 cali. Muszę więc znaleźć, ile 12-calowych linii należy ustawić wzdłuż okręgu, aby uzyskać krzywą o długości 31 cali.
Aby to zrobić, mogę podzielić 31 przez 12. (Pamiętaj, że to samo, co pytanie „ile 12 jest w 31).
Odpowiedź to
Równanie x ^ 2 + y ^ 2 = 25 definiuje okrąg przy początku i promieniu 5. Linia y = x + 1 przechodzi przez okrąg. Jaki jest punkt (punkty), w którym linia przecina okrąg?
Istnieją 2 punkty przekroju: A = (- 4; -3) i B = (3; 4) Aby sprawdzić, czy istnieją jakieś punkty przecięcia, musisz rozwiązać układ równań, w tym równania okręgu i linii: {(x ^ 2 + y ^ 2 = 25), (y = x + 1):} Jeśli podstawisz x + 1 dla y w pierwszym równaniu, otrzymasz: x ^ 2 + (x + 1) ^ 2 = 25 x ^ 2 + x ^ 2 + 2x + 1 = 25 2x ^ 2 + 2x-24 = 0 Możesz teraz podzielić obie strony przez 2 x ^ 2 + x-12 = 0 Delta = 1 ^ 2-4 * 1 * (- 12) Delta = 1 + 48 = 49 sqrt (Delta) = 7 x_1 = (- 1-7) / 2 = -4 x_2 = (- 1 + 7) / 2 = 3 Teraz musimy zastąpić obliczone wartości x, aby znaleźć odpowiednie wartości y y_1 = x_1 + 1 = -4 +
Jaki jest obwód koła o średnicy 15 cali, jeśli średnica okręgu jest wprost proporcjonalna do jego promienia, a okrąg o średnicy 2 cali ma obwód około 6,28 cala?
Uważam, że pierwsza część pytania miała powiedzieć, że obwód koła jest wprost proporcjonalny do jego średnicy. Ten związek jest taki, jak dostajemy pi. Znamy średnicę i obwód mniejszego okręgu, odpowiednio „2 w” i „6,28 cala”. Aby określić proporcję między obwodem a średnicą, dzielimy obwód przez średnicę „6,28 cala” / „2 cale” = „3,14”, która wygląda podobnie do pi. Teraz, gdy znamy proporcję, możemy pomnożyć średnicę większego okręgu razy proporcję, aby obliczyć obwód koła. „15 cali” x „3,14” = „47,1 cala”. Odpowiada to wzorom do określania obwodu koła, które są C = pid i 2pir, w któryc
Okrąg A ma promień 2 i środek (6, 5). Okrąg B ma promień 3 i środek (2, 4). Jeśli okrąg B zostanie przetłumaczony przez <1, 1>, czy nakłada się on na okrąg A? Jeśli nie, jaka jest minimalna odległość między punktami w obu okręgach?
„okręgi pokrywają się”> „musimy tutaj porównać odległość (d)„ ”między środkami do sumy promieni” • „jeśli suma promieni”> d ”, to koła pokrywają się • •„ jeśli suma promienie „<d” wtedy nie pokrywają się ”„ przed obliczeniem d wymagamy znalezienia nowego centrum ”„ B po danym tłumaczeniu ”„ pod tłumaczeniem ”<1,1> (2,4) na (2 + 1, 4 + 1) do (3,5) larrcolor (czerwony) „nowy środek B” „obliczyć d użyj wzoru„ kolor (niebieski) ”„ d = sqrt ((x_2-x_1) ^ 2 + (y_2- y_1) ^ 2) „niech” (x_1, y_1) = (6,5) „i” (x_2, y_2) = (3,5) d = sqrt ((3-6) ^ 2 + (5-5) ^ 2) = sqrt9 = 3 "suma promieni" = 2 + 3 = 5 &quo