Jakie jest nachylenie linii przechodzącej przez punkty (10, -8) i (7, -8)?

Jakie jest nachylenie linii przechodzącej przez punkty (10, -8) i (7, -8)?
Anonim

Odpowiedź:

nachylenie = 0

Wyjaśnienie:

Aby obliczyć nachylenie, użyj #color (niebieski) „formuła gradientu” #

#color (czerwony) (pasek (ul (| kolor (biały) (2/2) kolor (czarny) (m = (y_2-y_1) / (x_2-x_1)) kolor (biały) (2/2) |))) #

gdzie m oznacza nachylenie i # (x_1, y_1), (x_2, y_2) „2 punkty współrzędnych” #

tutaj 2 punkty to (10, -8) i (7, -8)

pozwolić # (x_1, y_1) = (10, -8) "and" (x_2, y_2) = (7, -8) #

#rArrm = (- 8 - (- 8)) / (7-10) = 0 / (- 3) = 0 #

Nachylenie zero wskazuje, że linia jest pozioma, równoległa do osi x i przechodzi przez wszystkie punkty w płaszczyźnie z tą samą współrzędną y.

Dla 2 podanych punktów obie współrzędne y wynoszą - 8, a więc równanie linii jest #color (niebieski) „y = -8”. #Jeśli zauważysz ten fakt, można stwierdzić, że nachylenie wynosi zero bez użycia formuły gradientu.

wykres {y-0.001x + 8 = 0 -20, 20, -10, 10}