Odpowiedź:
Wyjaśnienie:
Dla danej funkcji
Funkcja f jest taka, że f (x) = a ^ 2x ^ 2-ax + 3b dla x <1 / (2a) Gdzie aib są stałe dla przypadku, gdy a = 1 i b = -1 Znajdź f ^ - 1 (cf i znajdź swoją domenę Znam domenę f ^ -1 (x) = zakres f (x) i wynosi -13/4, ale nie znam kierunku znakowania nierówności?
Zobacz poniżej. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Zakres: Umieść w formie y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimalna wartość -13/4 Występuje przy x = 1/2 Zakres So jest (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Używając wzoru kwadratowego: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Przy odrobinie myślenia widzimy, że dla domeny, w której mamy wymagane jest odwrotne : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Z domeną: (-13 / 4
Niech f będzie funkcją ciągłą: a) Znajdź f (4), jeśli _0 ^ (x ^ 2) f (t) dt = x sin πx dla wszystkich x. b) Znajdź f (4), jeśli _0 ^ f (x) t ^ 2 dt = x sin πx dla wszystkich x?
A) f (4) = pi / 2; b) f (4) = 0 a) Rozróżnij obie strony. Poprzez Drugie Podstawowe Twierdzenie Rachunku po lewej stronie i reguły produktu i łańcucha po prawej stronie widzimy, że różnicowanie ujawnia, że: f (x ^ 2) * 2x = grzech (pik) + piksele (piksele) ) Letting x = 2 pokazuje, że f (4) * 4 = sin (2pi) + 2 pikos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Zintegruj termin wewnętrzny. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Oceń. (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) (f (x)) ^ 3/3 = xsin (pix) (f (x)) ^ 3 = 3xsin (pix) Niech x = 4. (f (4)) ^ 3 = 3 (4) sin (4pi) (f (4)) ^ 3 = 12