Odpowiedź:
Twoja polarna fabuła powinna wyglądać mniej więcej tak:
Wyjaśnienie:
Pytanie prosi nas o stworzenie wykresu biegunowego funkcji kąta,
Funkcja
To jest ditance do początku, które może być pod dowolnym kątem, więc zróbmy nasze osie,
Następnie warto sporządzić tabelę wartości naszej funkcji. Wiemy to
Gdzie również uwzględniliśmy obliczenie współrzędnych kartezjańskich każdego punktu, gdzie
Wykres g (x) powstaje, gdy wykres f (x) = x jest przesunięty o 6 jednostek w górę. Jakie jest równanie g (x)?
G (x) = abs (x) +6 Wykres pokazany 6 jednostek powyżej początku to g (x) = abs (x) +6 Przedstawiony wykres pochodzący z początku to f (x) = abs (x) wykres { (y-abs (x)) (y-abs (x) -6) = 0 [-20,20, -10,10]} Niech Bóg błogosławi ... Mam nadzieję, że wyjaśnienie jest przydatne.
Wyświetlany jest wykres h (x). Wykres wydaje się być ciągły w miejscu, gdzie zmienia się definicja. Pokaż, że h jest w rzeczywistości ciągłym odnajdywaniem lewego i prawego limitu i pokazaniem, że definicja ciągłości jest spełniona?
Prosimy odnieść się do Wyjaśnienia. Aby pokazać, że h jest ciągłe, musimy sprawdzić jego ciągłość przy x = 3. Wiemy, że h będzie ciągłe. w x = 3, jeśli i tylko wtedy, gdy lim_ (x do 3-) h (x) = h (3) = lim_ (x do 3+) h (x) ............ ................... (ast). Jako x do 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x do 3-) h (x) = lim_ (x do 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x do 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Podobnie, lim_ (x do 3+) h (x) = lim_ (x do 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x do 3+) h (x) = 4 .............................
Naszkicuj wykres y = 8 ^ x, podając współrzędne dowolnych punktów, w których wykres przecina osie współrzędnych. Opisz w pełni transformację, która przekształca wykres Y = 8 ^ x na wykres y = 8 ^ (x + 1)?
Zobacz poniżej. Funkcje wykładnicze bez transformacji pionowej nigdy nie przekraczają osi x. Jako taki, y = 8 ^ x nie będzie miał żadnych przecięć x. Będzie on miał punkt przecięcia Y w y (0) = 8 ^ 0 = 1. Wykres powinien przypominać następujący. wykres {8 ^ x [-10, 10, -5, 5]} Wykres y = 8 ^ (x + 1) to wykres y = 8 ^ x przesunięty o 1 jednostkę w lewo, tak że jest to y- przechwycenie znajduje się teraz w (0, 8). Zobaczysz również, że y (-1) = 1. wykres {8 ^ (x + 1) [-10, 10, -5, 5]} Mam nadzieję, że to pomoże!