Jak rozwiązać bez zasady l'Hospital? lim_ (x-> 0) (xcos ^ 2 (x)) / (x + tan (3x))

Jak rozwiązać bez zasady l'Hospital? lim_ (x-> 0) (xcos ^ 2 (x)) / (x + tan (3x))
Anonim

Odpowiedź:

#1/4#

Wyjaśnienie:

# „Możesz użyć rozszerzenia serii Taylora.” #

#cos (x) = 1 - x ^ 2/2! + x ^ 4/4! - … #

#tan (x) = x + x ^ 3/3 + 2 x ^ 5/15 + … #

# => cos ^ 2 (x) = 1 - x ^ 2 + x ^ 4 (1/4 + 2/24) … #

# = 1 - x ^ 2 + x ^ 4/3 … #

# => tan (3x) = 3x + 9 x ^ 3 + … #

# => (x * cos ^ 2 (x)) / (x + tan (3x)) = #

# (x - x ^ 3 + x ^ 5/3 …) / (4x + 9 x ^ 3 + …) #

# x-> 0 => „wyższe moce znikają” #

# = (x - …) / (4x + …) #

#= 1/4#

Odpowiedź:

Patrz poniżej.

Wyjaśnienie:

# (xcos ^ 2x) / (x + tan3x) = 1 / (1+ (sin3x) / (xcos3x)) * cos ^ 2x #

# = 1 / (1 + 3 ((sin3x) / (3x)) * 1 / (cos3x)) * cos ^ 2x #

Zauważ, że #lim_ (xrarr0) (sin3x) / (3x) = 1 # i #lim_ (xrarr0) cosx = 1 #

Tak więc w limicie mamy:

#1/(1+3(1) * 1/1) * (1)^2 = 1/(1+3) = 1/4#