Odpowiedź:
Największa para kolejnych liczb całkowitych to 198 i 200.
Wyjaśnienie:
Jeśli suma dwóch równych liczb parzystych wynosi 400, liczby będą wynosić 200 + 200.
Dlatego też największe możliwe kolejne liczby parzyste, których suma wynosi 400 lub mniej, wynoszą 198 i 200, które mają sumę 398.
Każda para kolejnych numerów mniejsza niż ta będzie miała sumę mniejszą niż 400.
Iloczyn dwóch kolejnych nieparzystych liczb całkowitych wynosi 29 mniej niż 8 razy ich suma. Znajdź dwie liczby całkowite. Odpowiedz w formie sparowanych punktów z najniższą z dwóch liczb całkowitych na początku?
(13, 15) lub (1, 3) Niech x i x + 2 będą nieparzystymi kolejnymi numerami, a następnie Jak na pytanie, mamy (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 lub 1 Teraz, PRZYPADEK I: x = 13:. x + 2 = 13 + 2 = 15:. Liczby to (13, 15). PRZYPADEK II: x = 1:. x + 2 = 1+ 2 = 3:. Liczby to (1, 3). Stąd, ponieważ tutaj powstają dwie sprawy; para liczb może być zarówno (13, 15) lub (1, 3).
Suma dwóch kolejnych liczb całkowitych wynosi maksymalnie 400. Jak znaleźć parę całkowitą z największą sumą?
198 i 200 Niech dwie liczby całkowite będą równe 2n i 2n + 2. Suma tych liczb wynosi 4n +2. Jeśli to jest, nie może być większa niż 400. Następnie 4n + 2 <= 400 4n <= 398 n <= 99,5 Ponieważ n jest liczbą całkowitą największa n może być równa 99. Dwie kolejne liczby parzyste to 2x99, 198 i 200. Albo po prostu powiedzmy, że połowa 400 to 200, więc jest to większa z dwóch kolejnych liczb parzystych, a druga to ta przed 198.
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /