wyrażenie staje się teraz:
Co to jest [5 (pierwiastek kwadratowy z 5) + 3 (pierwiastek kwadratowy z 7)] / [4 (pierwiastek kwadratowy z 7) - 3 (pierwiastek kwadratowy z 5)]?
(159 + 29sqrt (35)) / 47 kolorów (biały) („XXXXXXXX”) zakładając, że nie popełniłem żadnych błędów arytmetycznych (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Racjonalizuj mianownik mnożąc przez koniugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5)) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Co to jest (pierwiastek kwadratowy z [6] + 2 pierwiastek kwadratowy z [2]) (pierwiastek kwadratowy z [6] - 3 pierwiastek kwadratowy z 2)?
12 + 5sqrt12 Mnożymy mnożenie krzyżowe, to znaczy (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) równa się sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Czas pierwiastka kwadratowego jest równy liczbie pod korzeniem, tak 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Wstawiamy sqrt2sqrt6 w dowody: 24 + (8-3) sqrt6sqrt2 - 12 Możemy połączyć te dwa korzenie w jednym, przecież sqrtxsqrty = sqrt (xy) tak długo, jak ponownie nie oba negatywne. Otrzymujemy więc 24 + 5sqrt12 - 12. W końcu bierzemy różnicę dwóch stałych i nazywamy ją dniem 12 + 5sqrt12
Jaki jest pierwiastek kwadratowy z 7 + pierwiastek kwadratowy z 7 ^ 2 + pierwiastek kwadratowy z 7 ^ 3 + pierwiastek kwadratowy z 7 ^ 4 + pierwiastek kwadratowy z 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Pierwszą rzeczą, którą możemy zrobić, to anulować korzenie na tych z parzystymi mocami. Ponieważ: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 dla dowolnej liczby, możemy po prostu powiedzieć, że sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz 7 ^ 3 można przepisać jako 7 ^ 2 * 7, i że 7 ^ 2 może wydostać się z korzenia! To samo dotyczy 7 ^ 5, ale zostało przepisane jako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49