Odpowiedź:
75
Wyjaśnienie:
Najpierw zobaczmy, czy możemy rozwiązać nierówność:
Daje to złożoną nierówność:
Ponieważ chcemy tylko rozwiązań całkowitych, szukamy liczb:
Liczby te wynoszą 75.
Znając wzór na sumę N liczb całkowitych a) jaka jest suma pierwszych N kolejnych liczb całkowitych kwadratowych, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma pierwszych N kolejnych liczb całkowitych sześcianu Sigma_ (k = 1) ^ N k ^ 3?
Dla S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Mamy sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3 sum_ {i = 0} ^ ni ^ 2 + 3 sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rozwiązywanie dla sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tak sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 /
Która liczba jest w zestawie rozwiązań nierówności 5x + 3> 38?
Zestaw rozwiązań to wszystkie liczby większe niż 7. x> 7 Aby rozwiązać ten problem, najpierw odejmujemy kolor (czerwony) (3) z każdej strony nierówności, aby wyizolować termin x, zachowując zrównoważenie nierówności: 5x + 3 - kolor (czerwony ) (3)> 38 - kolor (czerwony) (3) 5x + 0> 35 5x> 35 Teraz dzielimy każdą stronę nierówności na kolor (czerwony) (5), aby rozwiązać x, zachowując równowagę nierówności: ( 5x) / kolor (czerwony) (5)> 35 / kolor (czerwony) (5) (kolor (czerwony) (anuluj (kolor (czarny) (5))) x) / anuluj (kolor (czerwony) (5)) > 7 x> 7
Rozwiązywanie układów nierówności kwadratowych. Jak rozwiązać system nierówności kwadratowych, używając linii podwójnej?
Możemy użyć linii podwójnej do rozwiązania dowolnego układu 2 lub 3 nierówności kwadratowych w jednej zmiennej (autor: Nghi H Nguyen). Rozwiązywanie układu 2 nierówności kwadratowych w jednej zmiennej za pomocą podwójnej linii liczbowej. Przykład 1. Rozwiąż system: f (x) = x ^ 2 + 2x - 3 <0 (1) g (x) = x ^ 2 - 4x - 5 <0 (2) Pierwsze rozwiązanie f (x) = 0 - -> 2 rzeczywiste pierwiastki: 1 i -3 Między 2 rzeczywistymi pierwiastkami, f (x) <0 Rozwiąż g (x) = 0 -> 2 rzeczywiste pierwiastki: -1 i 5 Między 2 rzeczywistymi pierwiastkami, g (x) <0 Wykres 2 rozwiązań ustawionych na podwójne