Odpowiedź:
Numer to
Wyjaśnienie:
Rozważmy liczbę ujemną jako
Otwórz wsporniki.
Odejmować
Faktoryzacja.
Stosując podane dane do dwóch możliwości, obowiązuje tylko druga możliwość.
Suma trzech liczb to 137. Druga liczba to cztery więcej niż dwa razy więcej niż pierwsza liczba. Trzecia liczba to pięć mniej niż trzykrotność pierwszej liczby. Jak znaleźć trzy liczby?
Liczby to 23, 50 i 64. Zacznij od napisania wyrażenia dla każdej z trzech liczb. Wszystkie są utworzone z pierwszej liczby, więc nazwijmy pierwszą liczbę x. Niech pierwsza liczba to x Druga liczba to 2x +4 Trzecia liczba to 3x -5 Powiedziano nam, że ich suma wynosi 137. Oznacza to, że gdy dodamy je wszystkie razem, otrzymamy 137. Napisz równanie. (x) + (2x + 4) + (3x - 5) = 137 Nawiasy nie są konieczne, są one włączone dla przejrzystości. 6x -1 = 137 6x = 138 x = 23 Gdy tylko znamy pierwszą liczbę, możemy obliczyć pozostałe dwa z wyrażeń, które napisaliśmy na początku. 2x + 4 = 2 xx23 +4 = 50 3x - 5 = 3xx23 -5 =
Dwa razy liczba plus trzy razy inna liczba równa się 4. Trzy razy pierwsza liczba plus cztery razy druga liczba to 7. Jakie są liczby?
Pierwsza liczba to 5, a druga to -2. Niech x będzie pierwszą liczbą, a y drugą. Następnie mamy {(2x + 3y = 4), (3x + 4y = 7):} Możemy użyć dowolnej metody do rozwiązania tego systemu. Na przykład eliminacja: po pierwsze, eliminacja x przez odjęcie wielokrotności drugiego równania od pierwszego, 2x + 3y-2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2, a następnie podstawiając wynik z powrotem do pierwszego równania, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Tak więc pierwsza liczba to 5, a drugi -2. Sprawdzanie przez podłączenie ich potwierdza wynik.
Jedna liczba to 4 mniej niż 3 razy druga liczba. Jeśli 3 więcej niż dwa razy pierwsza liczba zmniejszy się o 2 razy druga liczba, wynikiem będzie 11. Użyj metody podstawiania. Jaki jest pierwszy numer?
N_1 = 8 n_2 = 4 Jedna liczba to 4 mniej niż -> n_1 =? - 4 3 razy "........................." -> n_1 = 3? -4 drugi numer koloru (brązowy) (".........." -> n_1 = 3n_2-4) kolor (biały) (2/2) Jeśli 3 więcej "... ........................................ "->? +3 niż dwa razy pierwsza liczba „............” -> 2n_1 + 3 jest zmniejszona o „......................... .......... "-> 2n_1 + 3-? 2 razy druga liczba „.................” -> 2n_1 + 3-2n_2 wynikiem jest 11 kolorów (brązowy) („.......... ........................... "-> 2n_1 + 3-2n_2 = 11)" ~~~~~~~~~~~ ~