Wykres linii l na płaszczyźnie xy przechodzi przez punkty (2,5) i (4,11). Wykres linii m ma nachylenie -2 i punkt przecięcia x 2. Jeśli punkt (x, y) jest punktem przecięcia linii l i m, jaka jest wartość y?
Y = 2 Krok 1: Określ równanie linii l Mamy wzór nachylenia m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Teraz przez punkt nachylenie formy równanie to y - y_1 = m (x - x_1) y-11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Krok 2: Określ równanie linii m Punkt przecięcia x będzie zawsze mają y = 0. Dlatego dany punkt to (2, 0). Z nachyleniem mamy następujące równanie. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Krok 3: Napisz i rozwiąż układ równań Chcemy znaleźć rozwiązanie systemu {(y = 3x - 1), (y = -2x + 4):} Przez podstawienie: 3x - 1 = -2x + 4 5x = 5 x = 1 Oznacza to, że y = 3 (1
Nachylenie linii wynosi 0, a punkt przecięcia y wynosi 6. Jakie jest równanie linii zapisanej w postaci nachylenia-przecięcia?
Nachylenie równe zero oznacza, że jest to pozioma linia przechodząca przez 6. Równanie wynosi wtedy: y = 0x + 6 lub y = 6
Jakie jest nachylenie linii przechodzącej przez punkt (-1, 1) i jest równoległe do linii przechodzącej przez (3, 6) i (1, -2)?
Twoje nachylenie wynosi (-8) / - 2 = 4. Zbocza równoległych linii są takie same, jak mają ten sam wzrost i przebiegają na wykresie. Nachylenie można znaleźć za pomocą „nachylenia” = (y_2-y_1) / (x_2-x_1). Dlatego, jeśli wstawimy liczby linii równoległej do oryginału, otrzymamy „nachylenie” = (-2 - 6) / (1-3) To następnie upraszcza do (-8) / (- 2). Twój wzrost lub kwota, o którą wzrasta, wynosi -8, a twój bieg lub kwota, o którą idzie, wynosi -2.