Odpowiedź:
Zobacz wyjaśnienie.
Wyjaśnienie:
Tutaj,
Jak udowodnić (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Patrz poniżej. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Udowodnij to: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Dowód poniżej za pomocą koniugatów i trygonometrycznej wersji twierdzenia Pitagorasa. Część 1 sqrt ((1-cosx) / (1 + cosx)) kolor (biały) („XXX”) = sqrt (1-cosx) / sqrt (1 + cosx) kolor (biały) („XXX”) = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) kolor (biały) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Część 2 Podobnie sqrt ((1 + cosx) / (1-cosx) kolor (biały) („XXX”) = (1 + cosx) / sqrt (1-cos ^ 2x) Część 3: Łączenie terminów sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) kolor (biały) („XXX”) = (1-cosx) / sqrt (1-cosx 2x) + (1 + cosx) / sqrt (1-cos ^ 2x) kolor (biał
Jak udowodnić (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2sekx?
Konwertuj lewą stronę na terminy ze wspólnym mianownikiem i dodaj (po drodze konwertując cos ^ 2 + sin ^ 2 na 1); uprościć i odnieść się do definicji sec = 1 / cos (cos (x) / (1 + sin (x))) + ((1 + sin (x)) / cos (x)) = (cos ^ 2 (x) + 1 + 2 sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2 sin (x)) / (cos (x) (1 + sin (x) ) = 2 / cos (x) = 2 * 1 / cos (x) = 2 sek (x)