Odpowiedź:
Najpierw znajdź m.
Wyjaśnienie:
Pierwsze trzy współczynniki zawsze będą
Suma tych upraszcza
Jedynym pozytywnym rozwiązaniem jest
Teraz, w rozszerzeniu o m = 9, terminem bez x musi być termin zawierający
Ten termin ma współczynnik
Rozwiązaniem jest 84.
Pierwszy i drugi termin sekwencji geometrycznej to odpowiednio pierwszy i trzeci termin sekwencji liniowej. Czwarty termin sekwencji liniowej wynosi 10, a suma pierwszych pięciu terminów wynosi 60. Znajdź pięć pierwszych terminów sekwencji liniowej?
{16, 14, 12, 10, 8} Typowa sekwencja geometryczna może być przedstawiona jako c_0a, c_0a ^ 2, cdots, c_0a ^ k i typowa sekwencja arytmetyczna jako c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Wywoływanie c_0 a jako pierwszego elementu dla sekwencji geometrycznej, którą mamy {(c_0 a ^ 2 = c_0a + 2Delta -> "Pierwsza i druga GS to pierwsza i trzecia LS"), (c_0a + 3Delta = 10- > „Czwarty termin ciągu liniowego wynosi 10”), (5c_0a + 10Delta = 60 -> „Suma pierwszych pięciu terminów wynosi 60”):} Rozwiązywanie dla c_0, a, Delta otrzymujemy c_0 = 64/3 , a = 3/4, Delta = -2, a pierwszych pięć
Suma pierwszych czterech warunków GP wynosi 30, a ostatnich czterech warunków 960. Jeśli pierwsza i ostatnia kadencja GP wynosi odpowiednio 2 i 512, znajdź wspólny współczynnik.
2root (3) 2. Załóżmy, że wspólny współczynnik (cr) danego GP to r i n ^ (th) termin to ostatni termin. Biorąc to pod uwagę, pierwszym terminem GP jest 2.: „GP jest„ {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Biorąc pod uwagę, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (gwiazda ^ 1), i, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (gwiazda ^ 2). Wiemy również, że ostatni termin to 512.:. r ^ (n-1) = 512 .................... (gwiazda ^ 3). Teraz (gwiazda ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, tj. (R ^ (n-1)) / r ^ 3 (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960. :.
Suma czterech kolejnych terminów sekwencji geometrycznej wynosi 30. Jeśli AM pierwszego i ostatniego terminu wynosi 9. Znajdź wspólny współczynnik.
Niech pierwszy termin i wspólny stosunek GP to odpowiednio a i r. Przez 1 warunek a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Przez drugi warunek a + ar ^ 3 = 2 * 9 .... (2) Odejmowanie (2) od (1) ar + ar ^ 2 = 12 .... (3) Dzielenie (2) przez (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Więc r = 2 lub 1/2