Odpowiedź:
Wyjaśnienie:
Jaka jest liczba rzeczywista, liczba całkowita, liczba całkowita, liczba wymierna i liczba niewymierna?
Wyjaśnienie Poniżej Liczby wymierne występują w 3 różnych formach; liczby całkowite, ułamki i kończące lub powtarzające się dziesiętne, takie jak 1/3. Liczby irracjonalne są dość „bałaganiarskie”. Nie mogą być zapisywane jako ułamki, są niekończące się, nie powtarzające się dziesiętne. Przykładem tego jest wartość π. Liczbę całkowitą można nazwać liczbą całkowitą i jest liczbą dodatnią lub ujemną albo zerem. Przykładem tego jest 0, 1 i -365.
Czy liczba rzeczywista sqrt21, liczba wymierna, liczba całkowita, liczba całkowita, liczba irracyjna?
Jest to liczba irracjonalna, a zatem prawdziwa. Najpierw udowodnijmy, że sqrt (21) jest liczbą rzeczywistą, w rzeczywistości pierwiastek kwadratowy wszystkich pozytywnych liczb rzeczywistych jest rzeczywisty. Jeśli x jest liczbą rzeczywistą, to definiujemy dla liczb dodatnich sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Oznacza to, że patrzymy na wszystkie rzeczywiste liczby y takie, że y ^ 2 <= x i przyjmujemy najmniejszą liczbę rzeczywistą, która jest większa niż wszystkie te y, tzw. Supremum. W przypadku liczb ujemnych te y nie istnieją, ponieważ dla wszystkich liczb rzeczywistych przyjmowanie kwadratu tej
Udowodnij pośrednio, jeśli n ^ 2 jest liczbą nieparzystą, a n jest liczbą całkowitą, to n jest liczbą nieparzystą?
Dowód przez sprzeczność - patrz poniżej Mówi się nam, że n ^ 2 jest liczbą nieparzystą, a n w ZZ:. n ^ 2 w ZZ Załóżmy, że n ^ 2 jest nieparzyste, a n jest parzyste. Więc n = 2k dla niektórych k ZZ i n ^ 2 = nxxn = 2kxx2k = 2 (2k ^ 2), która jest parzystą liczbą całkowitą:. n ^ 2 jest równe, co przeczy naszemu założeniu. Dlatego musimy dojść do wniosku, że jeśli n ^ 2 jest nieparzyste, n musi być również dziwne.