Odpowiedź:
Centrum jest
Eqn.
Wyjaśnienie:
Niech podane punkty. być
Ponieważ są to końce średnicy, środkowy punkt.
Dlatego centrum jest
Wreszcie eqn. koła, z centrum
Punkty (-2,5) i (9, -3) to punkty końcowe średnicy okręgu, w jaki sposób można znaleźć długość promienia okręgu?
Promień okręgu ~ = 6,80 (patrz przybliżony diagram poniżej) Średnica okręgu jest podana przez twierdzenie Pitagorasa jako kolor (biały) („XXX”) sqrt (8 ^ 2 + 11 ^ 2) kolor (biały) („XXX ") = sqrt (185 kolorów (biały) (" XXX ") ~ = 13.60 (za pomocą kalkulatora) Promień jest połową długości średnicy.
Promień większego okręgu jest dwa razy dłuższy niż promień mniejszego okręgu. Powierzchnia pączka wynosi 75 pi. Znajdź promień mniejszego (wewnętrznego) okręgu.
Mniejszy promień wynosi 5 Niech r = promień wewnętrznego okręgu. Następnie promień większego okręgu wynosi 2r. Z odniesienia otrzymujemy równanie dla powierzchni pierścienia: A = pi (R ^ 2-r ^ 2) Zastępca 2r dla R: A = pi ((2r) ^ 2- r ^ 2) Uprość: A = pi ((4r ^ 2 r ^ 2) A = 3 pir ^ 2 Zastąp na danym obszarze: 75 ppi = 3 pery ^ 2 Podziel obie strony na 3 ppi: 25 = r ^ 2 r = 5
Punkty (–9, 2) i (–5, 6) są punktami końcowymi średnicy okręgu. Jaka jest długość średnicy? Jaki jest punkt środkowy C okręgu? Biorąc pod uwagę punkt C, który znalazłeś w części (b), podaj punkt symetryczny do C wokół osi x
D = sqrt (32) = 4sqrt (2) ~~ 5,66 środek, C = (-7, 4) symetryczne punktowo o oś x: (-7, -4) Dane: punkty końcowe średnicy okręgu (- 9, 2), (-5, 6) Za pomocą wzoru odległość znaleźć długości średnicy: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - X_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5,66 pomocą punkt środkowy formuła znaleźć środek: ((X_1 + x_2) / 2 (y_1 + y_1) / 2): C = ((-9 ± 5) / 2, (6 + 2) / 2) = (-14/2, 8/2) = (-7, 4) Użyj reguły współrzędnych do refleksji na temat osi x (x, y) -> (x, -y): (-7, 4) punkt symetryczny wokół osi x: ( -7 -