Odpowiedź:
zero
Wyjaśnienie:
Jeśli masz tylko jeden numer lub milion liczby, które są dokładnie takie same (jak wszystkie to 25), odchylenie standardowe będzie zero.
Aby uzyskać odchylenie standardowe większa niż zero, musisz mieć próbkę, która zawiera wartości, które są nie ten sam.
Tak więc, co najmniej, potrzebujesz próbki co najmniej dwie wartości które nie są równoważne, aby uzyskać odchylenie standardowe większe niż zero.
nadzieja, która pomaga
Poniższe dane pokazują liczbę godzin snu uzyskanych podczas ostatniej nocy dla próbki 20 pracowników: 6,5,10,5,6,9,9,5,9,5,8,7,8,6, 9,8,9,6,10,8. Jakie jest znaczenie? Czym jest wariancja? Jakie jest odchylenie standardowe?
Średnia = 7,4 Odchylenie standardowe ~~ 1,715 Wariancja = 2,94 Średnia jest sumą wszystkich punktów danych podzieloną przez liczbę punktów danych. W tym przypadku mamy (5 + 5 + 5 + 5 + 6 + 6 + 6 + 6 + 7 + 8 + 8 + 8 + 8 + 9 + 9 + 9 + 9 + 9 + 10 + 10) / 20 = 148/20 = 7,4 Wariancja to „średnia kwadratowych odległości od średniej”. http://www.mathsisfun.com/data/standard-deviation.html Oznacza to, że odejmujesz każdy punkt danych od średniej, kwadratujesz odpowiedzi, a następnie dodajesz je wszystkie i dzielimy przez liczbę punktów danych. W tym pytaniu wygląda to tak: 4 (5-7,4) = 4 (-2.4) ^ 2 = 4 (5.76) = 23.04
Test składa się z 910 pytań prawdziwych lub fałszywych. Jeśli uczeń odgadnie każde pytanie, jakie jest standardowe odchylenie liczby poprawnych odpowiedzi?
15.083 W przypadku dwumianowej zmiennej losowej odchylenie standardowe jest podawane przez: Sigma = sqrt {np (1-p)} = sqrt {910 * (0,5) (1-0.5)} = sqrt {227,5} 15.083103 około 15.083
Załóżmy, że klasa uczniów ma średni wynik SAT z matematyki równy 720 i średni wynik werbalny 640. Odchylenie standardowe dla każdej części wynosi 100. Jeśli to możliwe, znajdź odchylenie standardowe dla wyniku złożonego. Jeśli nie jest to możliwe, wyjaśnij dlaczego.
141 Jeśli X = wynik matematyczny i Y = wynik słowny, E (X) = 720 i SD (X) = 100 E (Y) = 640 i SD (Y) = 100 Nie można dodać tych odchyleń standardowych, aby znaleźć standard odchylenie dla wyniku złożonego; możemy jednak dodać wariancje. Wariancja to kwadrat odchylenia standardowego. var (X + Y) = var (X) + var (Y) = SD ^ 2 (X) + SD ^ 2 (Y) = 100 ^ 2 + 100 ^ 2 = 20000 var (X + Y) = 20000, ale ponieważ chcemy odchylenia standardowego, po prostu weź pierwiastek kwadratowy z tej liczby. SD (X + Y) = sqrt (var (X + Y)) = sqrt20000 ~~ 141 Zatem odchylenie standardowe złożonego wyniku dla uczniów w klasie wynosi 141.