W bibliotece jest 5 osób. Ricky jest 5 razy wiek Mickeya, który jest w połowie wieku Laury. Eddie jest o 30 lat młodszy od podwójnego wieku Laury i Mickeya. Dan jest o 79 lat młodszy od Ricky'ego. Suma ich wieku wynosi 271 lat. Wiek Dana?
Jest to problem z równoczesnym korzystaniem z równań. Rozwiązaniem jest to, że Dan ma 21 lat. Użyjmy pierwszej litery imienia każdej osoby jako liczby mnogiej do reprezentowania ich wieku, więc Dan miałby lat D. Używając tej metody możemy zamienić słowa w równania: Ricky jest 5 razy wiek Mickeya, który jest połową wieku Laury. R = 5M (równanie1) M = L / 2 (równanie 2) Eddie jest o 30 lat młodszy od podwójnego wieku Laury i Mickeya. E = 2 (L + M) -30 (równanie 3) Dan jest o 79 lat młodszy od Ricky'ego. D = R-79 (równanie 4) Suma ich wieku wynosi 271. R + M + L + E + D = 271 (
Syn jest teraz 20 lat młodszy od swojego ojca, a dziesięć lat temu był trzy razy młodszy od swojego ojca. Ile mają teraz lat?
Zobacz proces rozwiązania poniżej; Niech x oznacza wiek ojca .. Niech y reprezentuje wiek syna .. Pierwsze stwierdzenie y = x - 20 x - y = 20 - - - eqn1 Drugie stwierdzenie (y - 10) = (x - 10) / 3 3 (y - 10) = x - 10 3y - 30 = x - 10 3y - x = -10 + 30 3y - x = 20 - - - eqn2 Rozwiązywanie jednocześnie ... x - y = 20 - - - eqn1 3y - x = 20 - - - eqn2 Dodanie obu równań .. 2y = 40 y = 40/2 y = 20 Podpisz wartość y do eqn1 x - y = 20 - - - eqn1 x - 20 = 20 x = 20 + 20 x = 40 Stąd wiek ojca x = 40 lat i wiek syna y = 20 lat
John jest 5 lat starszy od Mary. W ciągu 10 lat dwa razy mniejszy wiek Johna zmniejszony o wiek Maryi wynosi 35 lat, a wiek Johna będzie dwa razy wyższy niż obecny wiek Maryi. Jak znaleźć ich wiek teraz?
John ma 20 lat, a Mary ma teraz 15 lat. Niech J i M będą odpowiednio obecnym wiekiem Jana i Marii: J = M + 5 2 (J + 10) - (M + 10) = 35 2 (M + 5 + 10) - (M + 10) = 35 2 M + 30-M-10 = 35 M = 15 J = 20 Czek: 2 * 30-25 = 35 Również za dziesięć lat wiek Johna będzie dwa razy wyższy niż obecny wiek Mary: 30 = 2 * 15