Odpowiedź:
Okres to
Wyjaśnienie:
Okres funkcji formy
Nasza funkcja to
W porównaniu z
Używa reguły
Okres =
Upraszczamy się Kropka =
Poniżej znajduje się krzywa rozpadu dla bizmutu-210. Jaki jest okres półtrwania radioizotopu? Jaki procent izotopu pozostaje po 20 dniach? Ile okresów półtrwania minęło po 25 dniach? Ile dni minie, podczas gdy 32 gramy spadną do 8 gramów?
Zobacz poniżej Po pierwsze, aby znaleźć okres półtrwania z krzywej rozpadu, musisz narysować poziomą linię w poprzek połowy początkowej aktywności (lub masy radioizotopu), a następnie narysować pionową linię w dół od tego punktu do osi czasu. W tym przypadku czas na połowę masy radioizotopu wynosi 5 dni, więc jest to okres półtrwania. Po 20 dniach zauważ, że pozostało tylko 6,25 grama. To po prostu 6,25% pierwotnej masy. Opracowaliśmy w części i), że okres półtrwania wynosi 5 dni, więc po 25 dniach minie 25/5 lub 5 okresów półtrwania. Wreszcie, w części iv), powiedziano nam, że zaczynamy od 32
Grzech ^ 2 (45 ^ @) + grzech ^ 2 (30 ^ @) + grzech ^ 2 (60 ^ @) + grzech ^ 2 (90 ^ @) = (- 5) / (4)?
Patrz poniżej. rarrsin ^ 2 (45 °) + grzech ^ 2 (30 °) + grzech ^ 2 (60 °) + grzech ^ 2 (90 °) = (1 / sqrt (2)) ^ 2+ (1/2) ^ 2 + (sqrt (3) / 2) ^ 2 + (1) ^ 2 = 1/2 + 1/4 + 3/4 + 1 = 1/2 + 2 = 5/2
Udowodnij, że Łóżko 4x (grzech 5 x + grzech 3 x) = Łóżko x (grzech 5 x - grzech 3 x)?
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) Prawa strona: łóżeczko x (grzech 5x - grzech 3x) = łóżeczko x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Lewa strona: łóżeczko (4x) (sin 5x + sin 3x) = łóżeczko (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x Są równe quad sqrt #