Odpowiedź:
Jedność działania, miejsca i czasu. Większość greckich spektakli odbywała się w jednym miejscu, trwała jeden dzień lub krócej i dotyczyła jednego tematu (akcji).
Wyjaśnienie:
Wiele współczesnych sztuk używa także jedności. „Long day Journey Into Night” Eugene'a O'Neilla to jeden. „Who's Afraid Of Virginia Wolfe” Edwarda Albee jest kolejnym.
Początkowo dramaty greckie miały bardzo proste struktury i stawały się bardziej złożone w miarę dojrzewania sztuki. Początkowo na scenie nigdy nie było więcej niż 2 postaci. W miarę upływu czasu dozwolono więcej znaków.
Arystoteles próbował napisać przewodnik edukacyjny o sztuce w swojej „Poetyce”, która została podjęta przez Renesansowego Artystę ponad tysiąc lat później, kiedy została napisana, gdy została ponownie odkryta.
en.wikipedia.org/wiki/Classical_unities
Ta liczba jest mniejsza niż 200 i większa niż 100. Cyfra jedynki jest o 5 mniejsza niż 10. Cyfra dziesiątek jest o 2 większa niż cyfra jedności. Jaki jest numer?
175 Niech liczba będzie HTO Ones cyfra = O Biorąc pod uwagę, że O = 10-5 => O = 5 Podano również, że cyfra dziesiątek T wynosi 2 więcej niż cyfra jedności O => cyfra dziesiątek T = O + 2 = 5 + 2 = 7:. Liczba to H 75 Dana jest również taka, że „liczba jest mniejsza niż 200 i większa niż 100” => H może mieć tylko wartość = 1 Otrzymujemy naszą liczbę jako 175
Trzech Greków, trzech Amerykanów i trzech Włochów siedzi losowo wokół okrągłego stołu. Jakie jest prawdopodobieństwo, że ludzie z trzech grup siedzą razem?
3/280 Policzmy, w jaki sposób wszystkie trzy grupy mogłyby siedzieć obok siebie i porównać to z liczbą sposobów, w jakie wszystkie 9 mogłyby być losowo posadzone. Będziemy numerować ludzi od 1 do 9 i grupy A, G, I. stackrel A overbrace (1, 2, 3), stackrel G overbrace (4, 5, 6), stackrel I overbrace (7, 8, 9 ) Istnieją 3 grupy, więc są 3! = 6 sposobów na uporządkowanie grup w linii bez zakłócania ich wewnętrznych zamówień: AGI, AIG, GAI, GIA, IAG, IGA. W każdej grupie są 3 członków, więc znów są 3! = 6 sposobów rozmieszczenia członków w każdej z 3 grup: 123, 132, 213, 231, 3
Jeśli suma pierwiastków kostki jedności wynosi 0, to udowodnij, że Produkt pierwiastków kostki jedności = 1 Każdy?
„Patrz wyjaśnienie„ z ^ 3 - 1 = 0 ”to równanie, które daje pierwiastki sześcianu„ ”jedności. Możemy więc zastosować teorię wielomianów, aby„ wnioskować, że „z_1 * z_2 * z_3 = 1” (tożsamości Newtona ). ” „Jeśli naprawdę chcesz to obliczyć i sprawdzić:” z ^ 3 - 1 = (z - 1) (z ^ 2 + z + 1) = 0 => z = 1 „OR” z ^ 2 + z + 1 = 0 => z = 1 "OR" z = (-1 pm sqrt (3) i) / 2 => (z_1) * (z_2) * (z_3) = 1 * ((- 1 + sqrt (3) i ) / 2) * (- 1-sqrt (3) i) / 2 = 1 * (1 + 3) / 4 = 1