Linia prosta L przechodzi przez punkty (0, 12) i (10, 4). Znajdź równanie prostej, która jest równoległa do L i przechodzi przez punkt (5, –11). Rozwiąż bez papieru milimetrowego i użyj wykresów - pokaż wypracowanie
„y = -4 / 5x-7>„ równanie linii w ”kolor (niebieski)„ forma nachylenia-przecięcia ”to. • kolor (biały) (x) y = mx + b” gdzie m jest nachyleniem i b przecięcie y „” do obliczenia m użyj „koloru (niebieskiego)” wzoru gradientu • • kolor (biały) (x) m = (y_2-y_1) / (x_2-x_1) „pozwól” (x_1, y_1) = (0,12) "i" (x_2, y_2) = (10,4) rArrm = (4-12) / (10-0) = (- 8) / 10 = -4 / 5 rArr "linia L ma nachylenie "= -4 / 5 •" Linie równoległe mają równe nachylenia "rArr" linia równoległa do linii L ma również nachylenie "= -4 / 5 rArry = -4 / 5x + blarrcolor (niebiesk
Linia L ma równanie 2x- 3y = 5. Linia M przechodzi przez punkt (3, -10) i jest równoległa do linii L. Jak określić równanie dla linii M?
Zobacz proces rozwiązania poniżej: Linia L jest w standardowej postaci liniowej. Standardową formą równania liniowego jest: kolor (czerwony) (A) x + kolor (niebieski) (B) y = kolor (zielony) (C) Gdzie, jeśli to możliwe, kolor (czerwony) (A), kolor (niebieski) (B), a kolor (zielony) (C) to liczby całkowite, a A jest nieujemne, a A, B i C nie mają wspólnych czynników innych niż 1 kolor (czerwony) (2) x - kolor (niebieski) (3) y = kolor (zielony) (5) Nachylenie równania w standardowej postaci to: m = -kolor (czerwony) (A) / kolor (niebieski) (B) Zastępowanie wartości z równania na wzór nachylenia
Jakie jest równanie w standardowej postaci linii, która przechodzi przez punkt (1, 24) i ma nachylenie -0,6?
3x + 5y = 123 Napiszmy to równanie w formie nachylenia punktowego przed przekształceniem go w formę standardową. y = mx + b 24 = -0,6 (1) + b 24 = -0,6 + b 24,6 = b y = -0,6x + 24,6 Następnie dodajmy -0,6x do każdej strony, aby uzyskać równanie w standardowej postaci. Pamiętaj, że każdy współczynnik MUSI być liczbą całkowitą: 0.6x + y = 24.6 5 * (0.6x + y) = (24.6) * 5 3x + 5y = 123