Jak podzielić (2i -4) / (7 i -2) w formie trygonometrycznej?

Jak podzielić (2i -4) / (7 i -2) w formie trygonometrycznej?
Anonim

Odpowiedź:

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*s 47.48 ^ @ #

Wyjaśnienie:

Rozwiązanie:

# 2i-4 = #

#sqrt (4 + 16) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

#sqrt (20) cos (tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2)) #

# 7i-2 = #

#sqrt (4 + 49) cos (tan ^ -1 (-7/2)) + i * sin (tan ^ -1 (-7/2)) #

# (2i-4) / (7i-2) = #

#sqrt (20) / sqrt (53) cos (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) + i * sin (tan ^ -1 (-1/2) -tan ^ -1 (-1/2)) #

# (2i-4) / (7i-2) = (2sqrt (265)) / 53 cos 47.48^@+i*s 47.48 ^ @ #

Niech Bóg błogosławi … Mam nadzieję, że wyjaśnienie jest użyteczne.