Odpowiedź:
Twoje równanie kwadratowe ma
Wyjaśnienie:
Wyróżnik równania kwadratowego może dać nam tylko informacje o równaniu postaci:
Ponieważ najwyższy stopień tego wielomianu wynosi 2, musi mieć nie więcej niż 2 rozwiązania.
Wyróżnikiem jest po prostu rzeczy pod spodem pierwiastek kwadratowy (
Jeśli wyróżnik,
Dlatego twoje równanie kwadratowe musi mieć
Jaka jest właściwa opcja z danego pytania? ps - dostałem 98 jako odpowiedź, ale to nie jest poprawne (? idk może podana odpowiedź z tyłu jest błędna, możesz także zobaczyć i sprawdzić moje rozwiązanie, załączyłem rozwiązanie poniżej pytania)
98 to poprawna odpowiedź.Biorąc pod uwagę: 4x ^ 3-7x ^ 2 + 1 = 0 Dzielimy przez 4 znajdziemy: x ^ 3-7 / 4x ^ 2 + 0x + 1/4 = (x-alfa) (x-beta) (x-gamma) = x ^ 3- (alfa + beta + gamma) x ^ 2 + (alfabeta + betagamma + gammaalpha) x-alfabetagamma Tak: {(alfa + beta + gamma = 7/4), (alfabeta + betagamma + gammaalpha = 0) , (alphabetagamma = -1/4):} Tak: 49/16 = (7/4) ^ 2-2 (0) kolor (biały) (49/16) = (alfa + beta + gamma) ^ 2-2 (alfabeta + betagamma + gammaalpha) kolor (biały) (49/16) = alfa ^ 2 + beta ^ 2 + gamma ^ 2 i: 7/8 = 0 - 2 (-1/4) (7/4) kolor ( biały) (7/8) = (alfabeta + betagamma + gammaalpha) ^ 2-2 alfabetagamma (alf
X - y = 3 -2x + 2y = -6 Co można powiedzieć o systemie równań? Czy ma jedno rozwiązanie, nieskończenie wiele rozwiązań, brak rozwiązania lub 2 rozwiązania.
Nieskończenie wiele Mamy dwa równania: E1: x-y = 3 E2: -2x + 2y = -6 Oto nasze wybory: Jeśli mogę sprawić, że E1 będzie dokładnie E2, mamy dwa wyrażenia tej samej linii, więc istnieje nieskończenie wiele rozwiązań. Jeśli mogę uczynić wyrażenia xiy w E1 i E2 tym samym, ale kończąc na różnych liczbach, są one równe, linie są równoległe i dlatego nie ma rozwiązań.Jeśli nie mogę tego zrobić, to mam dwie różne linie, które nie są równoległe, a więc gdzieś będzie punkt przecięcia. Nie ma możliwości, aby dwie proste linie miały dwa rozwiązania (weź dwie słomki i przekonaj się sam - chyba że zgią
Użyj dyskryminatora, aby określić liczbę i rodzaj rozwiązań, które ma równanie? x ^ 2 + 8x + 12 = 0 A. nie prawdziwe rozwiązanie B.one prawdziwe rozwiązanie C. dwa racjonalne rozwiązania D. dwa nieracjonalne rozwiązania
C. dwa rozwiązania wymierne Rozwiązaniem równania kwadratowego a * x ^ 2 + b * x + c = 0 jest x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In rozważany problem, a = 1, b = 8 c = 12 Zastępowanie, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 lub x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 i x = (-8 - 4) / 2 x = (- 4) / 2 i x = (-12) / 2 x = - 2 i x = -6