Odpowiedź:
Wyrażenie liczbowe byłoby
Wyjaśnienie:
Odpowiedź:
Wyjaśnienie:
Jeden
minus
iloczyn czterech i liczby x
Prawdopodobnie słowo „
Dwa razy liczba minus druga liczba to -1. Dwa razy druga liczba dodana do trzech razy pierwsza liczba to 9. Jakie są dwie liczby?
(x, y) = (1,3) Mamy dwie liczby, które będę nazywać x i y. Pierwsze zdanie mówi „Dwa razy mniej minus druga liczba to -1” i mogę to zapisać jako: 2x-y = -1 Drugie zdanie mówi „Dwa razy druga liczba dodana do trzech razy pierwsza liczba to 9”, co może napisać jako: 2y + 3x = 9 Zauważmy, że oba te stwierdzenia są liniami i jeśli istnieje rozwiązanie, które możemy rozwiązać, punktem, w którym te dwie linie przecinają się, jest nasze rozwiązanie. Znajdźmy to: zamierzam przepisać pierwsze równanie do rozwiązania dla y, a następnie zastąpić je drugim równaniem. Tak: 2x-y = -1 2x + 1 = y, a tera
Jaka jest liczba rzeczywista, liczba całkowita, liczba całkowita, liczba wymierna i liczba niewymierna?
Wyjaśnienie Poniżej Liczby wymierne występują w 3 różnych formach; liczby całkowite, ułamki i kończące lub powtarzające się dziesiętne, takie jak 1/3. Liczby irracjonalne są dość „bałaganiarskie”. Nie mogą być zapisywane jako ułamki, są niekończące się, nie powtarzające się dziesiętne. Przykładem tego jest wartość π. Liczbę całkowitą można nazwać liczbą całkowitą i jest liczbą dodatnią lub ujemną albo zerem. Przykładem tego jest 0, 1 i -365.
Czy liczba rzeczywista sqrt21, liczba wymierna, liczba całkowita, liczba całkowita, liczba irracyjna?
Jest to liczba irracjonalna, a zatem prawdziwa. Najpierw udowodnijmy, że sqrt (21) jest liczbą rzeczywistą, w rzeczywistości pierwiastek kwadratowy wszystkich pozytywnych liczb rzeczywistych jest rzeczywisty. Jeśli x jest liczbą rzeczywistą, to definiujemy dla liczb dodatnich sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. Oznacza to, że patrzymy na wszystkie rzeczywiste liczby y takie, że y ^ 2 <= x i przyjmujemy najmniejszą liczbę rzeczywistą, która jest większa niż wszystkie te y, tzw. Supremum. W przypadku liczb ujemnych te y nie istnieją, ponieważ dla wszystkich liczb rzeczywistych przyjmowanie kwadratu tej